A blending hybrid model for representing
reaction-diffusion equations



OVERVIEW

Main ldea:
 To implement the hybrid blending method using a pure compartment-based

algorithm in one part of the domain, a pure molecular-based in another and an
overlap region that uses both.

Why Important?:

* More efficient exploration of biological systems.

 Reduces the need for highly computational simulations of particles across entire
domain.

 Therefore allowing faster computation in areas where less detail required.

How is it answered?:
Two examples are given, one diffusion problem and one morphogen gradient problem
where simulations are plotted against analytical solutions to check for accuracy and

relative error plots are provided as well.



THE BLENDING METHOD
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We can use any blending functions, as long as long as the following holds: D.(x) + D,(x) = D Vx € [0,1].



THE DOMAIN
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Q: Particles jump (diffuse) I: Partlcles-Jump/move in a blended QOp: Partlcles.move (dlffu§e)
manner (either by compartment or freely according to Brownian

between compartments i : \
Brownian motion) motion.



COMPARTMENT REGION

* We run the standard Gillespie algorithm to simulate diffusion in the pure-compartment/blending
region.
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* Split region into kK compartments each of length h where diffusive jumps occur at rate

* We evaluate D (x;) at the midpoint of each compartment x; for j=1 ... k.
* So then we know that:
a;(t)dt = P(]ump occurs in the j™" compartment in [t, t + dt])

where

D f
Cg])l\lj(t).

where Nj(t) is the number of particles in the jt compartment at time t.

aj(t) =

 Then we run the Gillespie algorithm as usual.



BROWNIAN REGION

* We store and evolve all positions of particles in the blending/pure Brownian region using
the standard Brownian motion formula:

x;(t + At) = x;(t) + /2Dp(x;)Até where & ~ N(0,1).

* Here we remember that Dp(x;) is a function of space and so we evaluate this at each
time-step for each particle in the blending/Brownian region.

 We also prescribe zero flux boundary conditions at the right hand end of the domain
(not across interfaces).




THE BLENDING METHOD

First initialise all the molecules in their compartments or at positions in the Brownian regime
(initial conditions).

Now set At for molecules in 05 and determine 7 for all diffusive jumps in (., then set t;; =
At and t, = 1.

If t < tp then a compartment-based event (C-event) occurs:
* Update thetime t = ¢..

* If a particle leaves I for (), update compartment numbers and delete a Brownian particle in
that compartment at random.

* |If a particle leaves Q. for I, update compartment numbers and initialise its distance from
interface I; using a uniform random number r such that x; = I; + rh.

e If a particle jumps in I, update the compartments and select a Brownian particle in that
compartment at random and shift its positon by +h depending on the jump direction.

* |f a particle leaves I for (g, remove a particle from the last compartment and select a
Brownian particle in that compartment at random and shift its positon by +nh.

* Else update the compartment numbers in ..



THE BLENDING METHOD CONT.

IV. Ifty < t.then a molecular-based event (M-event) occurs:

* Update the time t = ty,.

* Update the positions of all particles in g and I according to our Brownian motion equation.
* Enforce boundary condition at RHS of domain.

* If particles move over I; from Qg the delete those particles and add the number of them into
the nearest compartment to I in Q.

* Bin the particles according to their position in I for recording.

Set ty; = ty; + At and t. = T (where the propensities have been updated).

V. Repeat until desired end of simulation.



DIFFUSION EXAMPLE

Working over () = [0,1] with interfaces located at
I; = 0.25,1; = 0.75 and D = 1 the following
deterministic equation governs the system:
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where u(x,0) = 4H(0.25 —x) and u,(0,t) = u,(1,t) = 0.

Plotting the deterministic solution below against simulations
gives a very good fit (next steps would be to plot total
compartment probability as shown in next slide):
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Fig 1: The system displayed at progressive times with
particle concentrations shown in the pure-
compartment (blue), blending (green) and Brownian
(yellow) regions respectively. The deterministic PDE is
shown in red.
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EXAMPLE CONT.
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Fig 2: Plots of the analytical probability of finding a particle in the each region (blue) against the simulated
probability (red).




MORPHOGEN EXAMPLE

Working over {1 = [—1,1] with interfaces located at [; = —0.5,1; = 0.5. D = 1/40, A = 1000 and
u = 0.1 the following deterministic equation governs the system:

ou 0%u
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where u(x,0) =0,u,(—1,t) = —Aand u,(1,t) = 0.

Plotting the deterministic solution below against simulations gives a very good fit again:
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EXAMPLE CONT.

Fig 3: The system displayed at
progressive times with
particle concentrations

shown in the pure-
compartment (blue),
blending (green) and
Brownian (yellow) regions
respectively. The
deterministic PDE is shown in
red.
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EXAMPLE CONT.
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Fig 4: Plots of the total analytical particle numbers in each region (blue) against the total simulated particle
numbers (red).




CONCLUSIONS

Verified that particles may can migrate between each region easily and that the interchange
between the Gillespie algorithm and the Brownian SDE work well in the blending region.

* Ability to interchange modelling approach allows greater detail in Brownian regimes and less in
compartment, saving computational resources.

* We focus on a specific diffusion function for these example however any combination can be used
as longas D.(x) + D,(x) = D Vx € Q.

* PDE to compartment-based blending also seems to work, however | am still working on this as it’s
a little more complicated!



