Hats and pancakes in the sky: high-speed droplet dynamics
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Those droplets are travelling Yes Radu, now run!
pretty fast eh Ed? a ? )
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Study of fluid droplets evolving in a secondary fluid
What are droplet dynamics? EE—

phase (e.g. water droplets in air).

3D/ink-jet printing, spray technologies, forensics, virus
Applications E—

spreading (coughing/sneezing) and aeronautics etc.

Accurately model water droplet dynamics prior to/after
Motivation —

impact with incoming aerofoil > danger of aircraft icing.

Two-phase fluid, small droplets, large aerofoil, high-speed airflow,

Challenges —_— large density/viscosity ratios - difficult to model analytically,

experimentally and numerically.
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(I) Motivation and aims W

What did we do?
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(II) An existing droplet model

Origin
* Developed by Sor et al.”! > experimentally informed force-balance model - no fluid mechanics. 7
x
—C__F,
de? b
Overview dQU
ae =
* Two-dimensional flow - aerofoil moving at constant speed (flow in front of droplet accelerates) . dz‘
a
* Trajectory (x,y) and deformation (a) tracked - via force balance equations. M = Fy— Fa — Fy

Taylor analogy - deformation modelled like a mass-spring system (harmonic oscillator).

Assumptions e—_

1. Vertical air flow negligible. : @ |

v
i

2. Droplet deforms as oblate spheroid (see Fig.1).

3. No breakup of droplet. 5
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Fig. 1: (Left) Trajectory and deformation of droplet. (Right) 3D rotating view tracking the droplet.

[1] S. Sor, A. Garcia-Magarifio, and A. Velazquez, “Model to predict water droplet trajectories in the flow past an airfoil,” Aerospace Science and Technology 58, 26—35 (2016).
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(II) An existing droplet model

What did further analysis identify?

* X trajectory varies drastically for small changes
in initial velocity.

* Y trajectory can be ignored - gravity has little
effect and droplets typically suspended.

* Pressure battles surface tension force - driving
the oscillations and deformation.

* Larger droplets oscillate less but deform most -

uncharacteristic as breakup would occur.

Sor et al \
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Fig. 2: Effect of initial horizontal velocity
on X trajectory vs. time.
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Fig. 4: Relative force contributions to deformation vs. time for various droplet radii.
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Fig 3: Effect of initial vertical velocity (and

gravity) on Y trajectory vs. time.
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Fig. 5: Vertical deformation vs. time
for varying droplet radii.



(III) Numerical model (DNS)

Overview

* Axisymmetric half-droplet > governed by two-phase Navier-Stokes equations + interface conditions - open-source C library Basilisk.
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Fig. 6: Global and local computational boxes.

* Global model » too computationally heavy - requires > 0(107) grid points.
* Local model » still multi-scale, requiring tens of CPU hours solving in parallel but tractable » requires outflow and inflow conditions.

* Inflow conditions found solving global model without droplet > computationally inexpensive (alternatively use analytical potential
flow around sphere).
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(III) Numerical model (DNS)

Trajectory and deformation results

Droplet accelerates - initially oblate spheroidal shape » assumption breaks down at later times.

No oscillations observed - calls Taylor (mass-spring) analogy into question in this particular case.
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6 / 9 Fig. 7: Trajectory and deformation observed in the DNS model with horizontal velocity field (red = slow flow, blue = fast flow).




(III) Numerical model (DNS)

What did the flow analysis reveal?

Flow measured in front, behind and above droplet.

Non-spheroidal deformation driven by increasing pressure gradient across droplet.
[ ]

Negligible vertical velocity assumption verified above droplet center of mass.
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Fig. 8: Horizontal air velocity profile in Fig. 9: Pressure field around/inside the droplet Fig. 10: (Top) Vertical velocity field around droplet
front/behind droplet. prior to deformation. prior to deformation. (Bottom) Velocity profiles
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(IV) Conclusions and future work

Existing model — what did we find?

Vertical trajectory can be ignored - droplets typically suspended in clouds.

Oblate spheroidal shape - holds up to certain time - cannot capture non-uniform deformation thereafter.
Taylor analogy — no shape oscillations found in this regime - needs further investigation.

Verified negligible vertical background flow in stagnation region.

Difficult to re-create results - heavy reliance on experimental parameters - hinders predictive power.

Numerical model - what did we achieve?
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Good first attempt at predicting pre-impact dynamics in violent flow regime - self contained predictive model.
High-resolution flow - detailed deformation and flow quantities close to/within droplet.

Efficient coupling of global and local domains - solvable on realistic timescales (O (10?) CPU hours).



(IV) Conclusions and future work

Future work
* Further numerical validation of DNS over range of droplet sizes/flow conditions.
* Relax negligible vertical airflow assumption - considers droplets away from stagnation region.

* Investigate droplet breakup in accelerating flow vs. constant background flow.
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Extra Slides
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(II) An existing droplet model

Experimental setup
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Fig: Experimental rotating arm facility used to verify the analytical Fig: Analytical model results overlaid on images from the

model (taken from [1]). experiments [1].

[1] S. Sor, A. Garcfa-Magarifio, and A. Velazquez, “Model to predict water droplet trajectories in the flow past an airfoil,” Aerospace Science and Technology 58, 2635 (2016).
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(II) An existing droplet model

Governing equations

Horizontal trajectory

Vertical trajectory

Perpendicular
deformation

Droplet
mass
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Aerodynamic
drag forces

Gravitational
acceleration

Pressure, surface tension and
viscous forces

Newton’s second law - approximated forces incorporate: accelerating flow, drag laws, surface area change etc.

Solve numerically using RK4 method.
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Fig: Cross-section of oblate spheroidal droplet with

incoming aerofoil.




(II) An existing droplet model

Trajectory and deformation

Y

Fig: 3D view tracking deformation.

v

Fig: 2D cross-sectional view.

Droplet radius : 0.000287 m

= Aerofoil velocity : 91 m/s
Initial droplet velocity (x,y): (-0.865, -1) m/s
7 Simulation time: 0.00136 s

-22
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X Fig: 3D trajectory view
(note: no movement in Z).
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(II) An existing droplet model
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Fig: X displacement vs. time for
droplets with varying initial distance
from aerofoil.
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(III) Numerical model (DNS)

Governing equations

* Two-phase fluid (water/air) + droplet interface between them.

* Requires robust numerical integrator - open-source library Basilisk® - second-order accurate solutions in space/time on adaptive

meshes.

Dimensionless Navier-Stokes equations (in each fluid)

1 1
2
U5 —|— (’U,.l . V)ul —Vpl —|— R_Clv U, — FFQ

V-u =0
P(’Ufzi- + (us - V)uz) =—Vp, + ivaﬂa - iFg
Re; Fr?
Viup =10

Interface equations on y= h(.’f.__ 'T)

|

Uy = uq

vy = h: 4+ woh;

1
=0
2

1 1
2 We

vy = h: + uphg,
Hi Hiry2
[4Eh.}uﬁ. + F(h; — 1) (u,;_r; + 1:;-.;.)}

2
—pf(l-l-h%.)-l-R—M—(

o I hg.u,:g-—l—i.-',:ﬂ—h;.(u,;ﬂ—H:;;.))}

[2] S. Popinet, “An accurate adaptive solver for surface-tension-driven interfacial flows,” Journal of Computational Physics 228, 5838—-5866 (2009).
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(III) Numerical model (DNS)
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Displacement (in Z)

Fig: Displacement and deformation
vs. time for droplet from DNS model.

Semi-major deformation (in ¢)
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Fig: Air pressure profiles in front of
droplet at increasing times.
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