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Motivation

In this work, we seek numerical solutions U; ~ u(t;) to a system of d € N (nonlinear) ordinary
differential equations (ODEs)

du

= f(u(t),t) over te [to,ty], with wu(ty) = u’, (1)

on the mesh t = (¢o,...,ts), where t;4; =t; + AT for fixed AT = (t; — t9)/J. In particular, we are
interested in initial value problems (IVPs) (1) in which any combination of:

(i) the interval of integration, [to, ;] (ii) the number of mesh points, J + 1

(iii) the wallclock time to evaluate the vector field, f

is so large that simulating U; takes hours, days, or even weeks using sequential numerical
methods (e.g. Runge-Kutta).

The aims of this work are to:

develop a time-parallel algorithm (GParareal) that iteratively locates a numerical solution to
(1) using a Gaussian process (GP) emulator.

train the emulator using fine and coarse resolution acquisition and legacy solution data.

illustrate that GParareal can converge in fewer iterations than the classic parareal algo-
rithm, thus achieving additional parareal speed-up.

Parareal

Parareal’® is a well established time-parallel numerical method for solving a variety of IVPs - including
fusion plasma dynamics®. It locates a solution U to (1) (ont) in k € {1,..., J} iterations, yielding
a fixed parallel speed up (roughly J/k) compared to a serial numerical integrator.

Setup
e Discretise problem (1) into J sub-problems on J sub-intervals - assiging one processor to
each (J =5 in Fig. 1).
e Choose two sequential numerical integrators to carry out integration from ¢, to ¢4 :

— F — fine integrator with slow execution but high accuracy.

— ( — coarse integrator with fast execution but low accuracy.
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Algorithm
Goal: Locate U; = F(U;_;) without running F J times sequentially.

Step 1:  Calculate initial guesses using G serially: Uj = G(UJ_,).
Step 2: Fork=1to J

(i) Propagate solutions on each sub-interval using F in parallel, calculating F (Uf:ll)

(ii)  Sequentially calculate G(U%_,), then use the predictor-corrector (PC):

J

Uj = G(U;_1) + F(U;7) - G(U;). (2)
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Prediction Correction

(iif)  If the tolerance ||U¥ — U;?_1||OO < ¢ is met for all j, break the loop and return U¥.
Else continue iterations for the unconverged ¢;.

>
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Fig. 1: First iteration of parareal. Exact “fine” solution (black), first coarse solves (yellow), first
parallel fine solves (blue), second coarse solves (red), and the PC (2) solutions (red dots).

(zaussian process emulation

What is a GP emulator?

e A statistical model built from multivariate Gaussian distributions that emulates (pre-
dicts) an unknown function using a finite number of known evaluations of the function.

How does it work? 3

True function - Known evaluations

257 Predicted mean 95% uncertainty

* (Goal: model an unknown, expensive to eval-

uate, function H(u) (solid black line, Fig. 2). ‘T

e We only know H at a few evaluation points

(red dots).

A GP emulator conditions a Gaussian prior
over H on these known points to obtain a
Gaussian prediction over H at any input
location u € R:

H(“) ~ N(:u(u)v K(“? u)),

where p and K are known mean (solid blue)

Fig. 2: A GP emulator in action.
and covariance (shaded light blue) functions.
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GParareal

Idea: Avoid wasting valuable data by modelling the correction term in parareal (2) using a GP
emulator trained on all evaluations of F and G (plus legacy solution data if available)?.

We start by re-writing (2) as

unknown
Ujk — F(Ujk—l) — ("r o g + g><Ujk—1) — Q(U]I'{—l) + ("r R g)(UJk—l) ¥ (3)
\,—/ (. -~ / . ~ _y
known Prediction Correction

We can query the (trained) emulator to obtain

(F_g)(ng—l) ’\’/\/‘(M(U]‘~C 1)7K(Ugl'€—1aU]:C 1))7 (4)

J— J—

allowing us to approximate (3) by

J

Uj ~ G(U;-1) + E[(F - G)(U;-1)]. ()

~~

Expected value of (4)
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Fig. 3: First iteration of GParareal. Exact solution (black), first coarse solves (yellow), first parallel
fine solves (blue), residual between these solves (solid bars), second coarse runs (red), correction from

the GP (dashed bars), and the refined solutions from (5) (red dots).

Test problem: FitzHugh-Nagumo model
We test GParareal on the FitzHugh-Nagumo model

d 3 du 1 1w
ﬂzg(ul_ﬁ+m), d—;:_g(ul_g—l_é)’ over t € [0,40], (6)

using 2nd (G) and 4th (F) order Runge-Kutta solvers on J = 40 processors.

In Fig. 4, we solve (6) over a range of initial values to comparare the convergence rate k of both
parareal and GParareal. We find that GParareal:

e converges in significantly fewer iterations k£ than parareal for all tested initial values.
e locates a solution in faster wallclock time than parareal (results shown in paper?).

e« converges for initial values where parareal fails (i.e. when coarse solutions blow up).
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Fig. 4: Heatmaps displaying the number of iterations until convergence k of (a) parareal and (b)
GParareal when solving (6) for different initial values u’ € [—1.25,1.25]%. Black boxes indicate where
parareal returned a NalN value during simulation.

Conclusions and future work

e (GParareal can converge in faster wallclock time than parareal, locating solutions that
maintain accuracy (wrt parareal), even for chaotic systems (results shown in paper?).

e Future work: implement GParareal with a more efficient GP emulator so that it scales
for much larger ODE systems.

e Longer term: Develop a truly probabilistic time-parallel numerical method that returns
a distribution® rather than point estimates over the solution.
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