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Overview

We are interested in solving IVPs of the form

du
dt

= f
(
t,u(t)

)
over t ∈ [t0,T ], with u(t0) = u0 ∈ U ⊆ Rd , (1)

using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap

less accurate coarse solver (G).

We seek numerical solutions U j ≈ u(tj) to (1) on a pre-defined mesh t = (t0, . . . , tJ),

where tj+1 = tj +∆T for fixed ∆T = (T − t0)/J.

Computational budget does not allow F to be run over whole [t0,T ] but does allow on

time slices [tj , tj+1] in parallel.

Takeaway message: We propose the GParareal algorithm, a “parareal”-type algorithm

(Lions et al., 2001) that uses a Gaussian process (GP) emulator (trained on solution data

from F and G) to solve (1) in parallel.

Motivation: Borrow ideas from probabilistic numerics (PN) to make more efficient use of

the simulation data generated within parareal and perhaps quantify uncertainty on the fly.
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Parareal: The algorithm

Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single

processor, such that

U0
j+1 = G(U0

j ) j = 0, . . . , J − 1. (2)

Iteration k ⩾ 1: propagate each approximation in (2) using F in parallel, on J

processors, to obtain F(U0
j ) for j = 0, . . . , J − 1. These values are then used in the

predictor-corrector (PC):

Uk
j+1 = G(Uk

j )︸ ︷︷ ︸
predict

+F(Uk−1
j )− G(Uk−1

j )︸ ︷︷ ︸
correct

for j = 0, . . . , J − 1. (3)

For pre-defined tolerance ε > 0, the solution Uk
j has converged up to time tI if

|Uk
j − Uk−1

j | < ε ∀j ⩽ I . (4)

Key point: Algorithm stops once I = J, “converging” in k (out of J) iterations.
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Parareal: Convergence and Complexity

After k iterations, the first k time slices (at minimum) are converged, as the exact initial

condition (u0) has been propagated by F at least k times.

If parareal converges in k = J iterations, the solution will be equal to the one found by

calculating (1) serially, at an even higher computational cost! Convergence in k ≪ J

iterations is necessary if significant parallel speed-up is to be realised.

Assume, assume running F over any [tj , tj+1], j ∈ {0, . . . , J − 1}, takes wallclock time

TF (denote time TG similarly for G). Therefore, calculating (1) using F serially, takes

approximately Tserial = JTF seconds. Using parareal, the total wallclock time (in the

worst case, excluding any serial overheads) can be approximated by

Tpara ≈ JTG︸︷︷︸
Iteration 0

+
k∑

i=1

(
TF + (J − i)TG

)︸ ︷︷ ︸
Iterations 1 to k

= kTF + (k + 1)

(
J − k

2

)
TG . (5)

The approximate parallel speed-up is therefore

Spara ≈
Tserial

Tpara(k)
=

[
k

J
+ (k + 1)

(
1− k

2J

)
TG
TF

]−1

. (6)
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GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown function

f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red dots):

(x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be queried

at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

B

oth µ̂(x∗) and K̂ (x∗, x∗) have analytical expressions (not shown for clarity).
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GParareal: The idea

Corrections in parareal PC based on information from single previous iteration → all

other solution information ignored in Markovian-like manner.

Our idea: improve corrections using GP emulator to reduce iterations k.

How? We re-formulate the PC

Uk
j+1 = F(Uk

j ) = (F − G + G)(Uk
j ) = G(Uk

j )︸ ︷︷ ︸
prediction

+(F − G)(Uk
j )︸ ︷︷ ︸

correction

. (7)

We use a GP emulator to model the correction term, trained on all previously obtained

evaluations of F and G ((x , y) is the dataset):

(F − G)(Uk
j ) | (x , y) ∼ N

(
µ̂(Uk

j ), K̂ (Uk
j ,U

k
j )
)
. (8)

Whole Gaussian cannot be propagated in (7), so we approximate using the mean value

and carry out the refinement:

Uk
j+1 = G(Uk

j ) + µ̂(Uk
j ). (9)
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GParareal: How it works

Key benefit: GParareal can re-use the F − G data in future GParareal simulations as “legacy

data” to pre-train the GP emulator and provide additional speedup — see the numerical

experiments later.
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FitzHugh–Nagumo model: Solutions

Consider the FitzHugh–Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 1962) given by

du1
dt

= c
(
u1 −

u31
3

+ u2
)
,

du2
dt

= −1

c
(u1 − a+ bu2), t ∈ [0, 40].

We integrate divide the interval into J = 40 slices and set the tolerance for both GParareal and parareal

to ε = 10−6. We use solvers G = RK2 and F = RK4 with NG = 160 and NF = 1.6× 108 steps

respectively. Note that the large value of NF is required to ensure that F is expensive to run and that

parallel speedup can be realised (as both algorithms require TG/TF ≪ 1).

Figure 1: Numerical results obtained solving the FHN model for u0 = (−1, 1)⊺.
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FitzHugh–Nagumo model: Convergence

(a) Parareal (b) GParareal

Figure 2: Iterations count k (max. J = 40) for various initial values u0 ∈ [−1.25, 1.25]2.
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FitzHugh–Nagumo: Legacy Data

GParareal can use legacy data to pre-train the emulator and

solve faster!

Step 1: Solve FHN model using initial condition

u0 = (−1, 1)⊺.

Step 2: Store F and G solution data (= legacy data).

Step 3: Re-initialise GParareal using legacy data to

solve for new initial condition u0 = (0.75, 0.25)⊺.

Accuracy of solutions with or without legacy data is similar

to that of parareal. Figure 3: Iterations until convergence k

(with/without legacy data).

Additional experiments on nonautonomous and chaotic systems in paper!
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Rössler system: Solution

Next we solve the Rössler system,

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3(u1 − ĉ), (10)

with parameters (â, b̂, ĉ) = (0.2, 0.2, 5.7) that cause the system to exhibit chaotic

behaviour (Rössler, 1976).

Suppose we wish to integrate (10) over

t ∈ [0, 340] with initial values

u0 = (0,−6.78, 0.02)⊺ and solvers G = RK1

and F = RK4. The interval is divided into

J = 40 time slices, NG = 9× 104 coarse steps,

and NF = 4.5× 108 fine steps.

The convergence tolerance is set to ε = 10−6.
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Rössler system: Convergence

(a) (b) (c)

Figure 4: Numerical results obtained solving the Rössler system (10) over t ∈ [0, 340]. (a) The

corresponding absolute errors between solutions from GParareal and parareal vs. the fine solution. (b)

Maximum absolute errors from (4) of each algorithm at successive iterations k until tolerance ε = 10−6

is met. (c) Median wallclock times (taken over 5 runs) of each simulation against the number of

processors (up to 40). Inset: The corresponding parallel speedup vs. the serial wallclock time.
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Rössler system: Discussion

In this experiment, rather than obtaining legacy data by solving (10) using alternative

initial values, we instead generate such data by integrating over a shorter time interval.

This is particularly useful if we are unsure how long to integrate our system for, i.e. to

reach some long-time equilibrium state or reveal certain dynamics of the system, as is the

case in many real-world dynamical systems.

The legacy simulation, integrating over [0, 170], takes nine iterations to converge using

GParareal (ten for parareal), giving us approximately kJ(2) = 9× 20 = 180 legacy

evaluations of F − G (results not shown).

Integrating (10) over the full interval [0, 340], GParareal converges in four iterations

sooner with the legacy data than without — refer to Figure 4(b). In Figure 4(c) we can

see that using the legacy data achieves a higher numerical speedup (3.4×) compared to

parareal (1.6×).

Figure 4(a) illustrates GParareal retaining a similar numerical accuracy to parareal with

and without the legacy data. Note the steadily increasing errors for both algorithms is

due to the chaotic nature of the Rössler system. 12/18



Nonautonomous system: Solutions

Consider the nonautonomous system given by

du1
dt

= −u2 + u1
( t

500
− u21 − u22

)
,

du2
dt

= u1 + u2
( t

500
− u21 − u22

)
, t ∈ [−20, 500].

(a) (b) (c)

Figure 5: Numerical results obtained solving the nonautonomous system over t ∈ [−20, 500].
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Double Pendulum System: Solutions

Consider the nonautonomous system given by

du1
dt

= −u2 + u1
( t

500
− u21 − u22

)
,

du2
dt

= u1 + u2
( t

500
− u21 − u22

)
, t ∈ [−20, 500].

(a) (b) (c)

Figure 6: Numerical results obtained solving the double pendulum system t ∈ [0, 80].
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Double Pendulum System: Convergence

(a) Parareal (b) GParareal

Figure 7: Iterations count k (max. J = 32) for various initial angles.
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Double Pendulum System: Convergence

Figure 8: Speedup plot.
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Summary
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Summary

We presented GParareal, a PinT algorithm that uses GP emulation to solve (low-dimensional)

IVPs in parallel.

can converge in fewer iterations → lower wallclock time.

solutions accurate wrt parareal.

can use legacy solution data (from previous solve or uniform grids in Rd).

can solve problems that parareal fails to converge for.

Other results (see paper for full details!):

Training GP comes at cost (TGP) which must be small compared to F solve (complexity
analysis + experiments in paper show this).

TGPara ≈ kTF + (k + 1)(J − k/2)TG︸ ︷︷ ︸
TPara

+TGP.

Convergence result shows errors at iteration k bounded by accuracy of emulator:

|u(tj)− Uk
j | ⩽ Λk

j−(k+1)∑
i=0

Ai 1 ⩽ k < j ⩽ J.
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Open problems

Can better/faster ML/PN methods be used to learn F − G : Rd → Rd? GPs struggle

with high-dimensional functions and so we need an alternative method to solve PDEs

(work in progress).

Similar issue wrt the cost of running the GPs → need to be fast compared to fine solver.

We currently approximate GP posterior using its mean (ignoring uncertainty). Can we

develop a truly probabilistic PinT algorithm? GParareal is a first positive step in this

direction.
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Additional results (put complexity, convergence result, numerics

here).
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