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= We are interested in solving IVPs of the form

d

(TZ = F(t,u(t)) over te[to, T], with u(ty)=u®ecl CRY, (1)
using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap

less accurate coarse solver (G).
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= We are interested in solving IVPs of the form
du

o= f(t,u(t)) over telt,T], with u(to)=u’ecld CRY, (1)

using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap
less accurate coarse solver (G).

= We seek numerical solutions U; ~ u(t;) to (1) on a pre-defined mesh t = (to, ..., t)),
where tj;1 = tj + AT for fixed AT = (T — tp)/J.

= Computational budget does not allow F to be run over whole [ty, T] but does allow on
time slices [tj, tj+1] in parallel.

= Takeaway message: We propose the GParareal algorithm, a “parareal”-type algorithm
(Lions et al., 2001) that uses a Gaussian process (GP) emulator (trained on solution data
from F and G) to solve (1) in parallel.

= Motivation: Borrow ideas from probabilistic numerics (PN) to make more efficient use of

the simulation data generated within parareal and perhaps quantify uncertainty on the fly.
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Parareal



Parareal: The algorithm

= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)
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= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)
= Iteration k > 1: propagate each approximation in (2) using F in parallel, on J
processors, to obtain F( UJQ) for j=0,...,J — 1. These values are then used in the
predictor-corrector (PC):
Ul = G(UN)+ F(USH = GUSY) for j=0,...,0—1. (3)
~——
predict correct

For pre-defined tolerance ¢ > 0, the solution UJ-" has converged up to time t; if

Uf —Uf Tt <e Vi<, (4)
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= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)
= Iteration k > 1: propagate each approximation in (2) using F in parallel, on J
processors, to obtain F( UJQ) for j=0,...,J — 1. These values are then used in the
predictor-corrector (PC):
Ul = G(UN)+ F(USH = GUSY) for j=0,...,0—1. (3)
~——
predict correct

For pre-defined tolerance ¢ > 0, the solution UJ-" has converged up to time t; if
Uf —Uf Tt <e Vi<, (4)
= Key point: Algorithm stops once | = J, “converging” in k (out of J) iterations.
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Parareal: How it works
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Parareal: Convergence and Complexity

» After k iterations, the first k time slices (at minimum) are converged, as the exact initial
condition (ug) has been propagated by F at least k times.

= |f parareal converges in k = J iterations, the solution will be equal to the one found by
calculating (1) serially, at an even higher computational cost! Convergence in k < J
iterations is necessary if significant parallel speed-up is to be realised.

» Assume, assume running F over any [t;, tj;1], j € {0,...,J — 1}, takes wallclock time
Tr (denote time Tg similarly for G). Therefore, calculating (1) using F serially, takes
approximately Tgerial = JT £ seconds. Using parareal, the total wallclock time (in the
worst case, excluding any serial overheads) can be approximated by

k
k
Toara = JIg +E (T]:—l-(J—i)Tg):kT]:+(k+1)<J—>Tg. (5)
~— : 2

. :1 .
Iteration 0 ' Iterations 1 to k

= The approximate parallel speed-up is therefore

serial |:k ( k) g]_l
S ar sera Ky (o KV Te] 6
para el J ( ) 2J) Tr 5/1)8
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GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

2.5 T T T T T T T T T T T T
N —— True function f(z)
15¢

oth i(x*) and K(x*, x*) have analytical expressions (not shown for clarity).
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= Step 1: Gaussian prior placed over the unknown function
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GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown function

f(x) (with known mean/covariance functions) p————————————————————
—— True function f(z) Posterior uncertainty (95%)
2 | ——Posterior mean + Known values of f(z)
f(x) ~ N (u(x), K(x,x)). 15}

= Step 2: Condition prior on known evaluations (red dots):
(x,y) = (X"’ f(X")>f=1,...,N'

= Step 3: Obtain Gaussian posterior, which can be queried

at any unknown x*:

() | (x,) ~ N (), R(x*, ")) Fesas a0 23 a5 e

Both 2i(x*) and K(x*,x*) have analytical expressions (not shown for clarity). )
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GParareal: The idea

Corrections in parareal PC based on information from single previous iteration — all
other solution information ignored in Markovian-like manner.

Our idea: improve corrections using GP emulator to reduce iterations k.

How? We re-formulate the PC

Ufir = F(UF) = (F =G+ G)(Uf) = G(Uf) +(F - G)(Uf). (7)
prediction correction

We use a GP emulator to model the correction term, trained on all previously obtained
evaluations of F and G ((x,y) is the dataset):

(F=G)(U) | (x,y) ~ N (a(Uf), K(UF, UF)). (8)

Whole Gaussian cannot be propagated in (7), so we approximate using the mean value
and carry out the refinement:
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GParareal: How it works
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Key benefit: GParareal can re-use the 7 — G data in future GParareal simulations as “legacy
data” to pre-train the GP emulator and provide additional speedup — see the numerical
experiments later.
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Numerical Experiments



FitzHugh—Nagumo model: Solutions

Consider the FitzZHugh—-Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 1962) given by

dU2 1

3
= — 2 4w, = ——(n—a+buw), te0,40]

3

We integrate divide the interval into J = 40 slices and set the tolerance for both GParareal and parareal
to e = 107°. We use solvers G = RK2 and F = RK4 with Ng = 160 and N = 1.6 x 10® steps
respectively. Note that the large value of Nx is required to ensure that F is expensive to run and that

parallel speedup can be realised (as both algorithms require Tg/Tx < 1),

—e—Parareal ]
—e—GParareal |1
— — ~Tolerance
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(a) Parareal (b) GParareal

Figure 2: Iterations count k (max. J = 40) for various initial values u® € [—1.25,1.25]°.
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FitzHugh—Nagumo: Legacy Data

102 w \
—o—Parareal
GParareal can use legacy data to pre-train the emulator and —o—GParareal (no legacy)
1006 —e—GParareal (legacy)
solve faster! - - - - Tolerance

= Step 1: Solve FHN model using initial condition
u = (-1,1)T.

Max. absolute error

= Step 2: Store F and G solution data (= legacy data).

= Step 3: Re-initialise GParareal using legacy data to
solve for new initial condition u® = (0.75,0.25)T.

Accuracy of solutions with or without legacy data is similar

to that of parareal. Figure 3: lterations until convergence k
(with /without legacy data).

Additional experiments on nonautonomous and chaotic systems in paper!
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Rossler system: Solution

= Next we solve the Rossler system,

dU1 . dU2 dU3 7 N
T up — us, ar dr b+ u3(u1 — €), (10)
with parameters (4, b, ¢) =(0.2,0.2,5.7) that cause the system to exhibit chaotic

behaviour (Rossler, 1976).

= uy + auw,

Fine
o GParareal
#* Parareal

10+

= Suppose we wish to integrate (10) over
t € [0,340] with initial values
uo = (0,—6.78,0.02)T and solvers G = RK1
and 7 = RK4. The interval is divided into
J = 40 time slices, Ng = 9 x 10* coarse steps, 5F

and Nz = 4.5 x 108 fine steps.
_10 L

= The convergence tolerance is set to ¢ = 107°. . . | |
-10 -5 0 5 10

uy



Rossler system: Convergence
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Figure 4: Numerical results obtained solving the Rossler system (10) over t € [0,340]. (a) The
corresponding absolute errors between solutions from GParareal and parareal vs. the fine solution. (b)
Maximum absolute errors from (4) of each algorithm at successive iterations k until tolerance ¢ = 10~°
is met. (c) Median wallclock times (taken over 5 runs) of each simulation against the number of
processors (up to 40). Inset: The corresponding parallel speedup vs. the serial wallclock time.
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Rossler system: Discussion

= In this experiment, rather than obtaining legacy data by solving (10) using alternative
initial values, we instead generate such data by integrating over a shorter time interval.
This is particularly useful if we are unsure how long to integrate our system for, i.e. to
reach some long-time equilibrium state or reveal certain dynamics of the system, as is the
case in many real-world dynamical systems.

» The legacy simulation, integrating over [0,170], takes nine iterations to converge using
GParareal (ten for parareal), giving us approximately kJ?) =9 x 20 = 180 legacy
evaluations of F — G (results not shown).

Integrating (10) over the full interval [0, 340], GParareal converges in four iterations
sooner with the legacy data than without — refer to Figure 4(b). In Figure 4(c) we can
see that using the legacy data achieves a higher numerical speedup (3.4x) compared to
parareal (1.6x).

» Figure 4(a) illustrates GParareal retaining a similar numerical accuracy to parareal with
and without the legacy data. Note the steadily increasing errors for both algorithms is

due to the chaotic nature of the Rossler system. 12/18



Nonautonomous system: Solutions

Consider the nonautonomous system given by

duq dus t
= u2—|—u1(500 uf—ug), E:ul—f—uQ(%—uf—ug), t € [-20,500].

al (theory)
numerical)
(theory)
(numerical)

14}

[——Fine - Parareal —— Fine - GParareal|

12+

e
S =
w9 o
5 h

E

u; error

10
1015 &
10° o
5 10°
;‘ 1010
1015 0 0 1 | |
0 100 200 300 400 500 32 64 128 256 512
t J
(b) (c)

Figure 5: Numerical results obtained solving the nonautonomous system over t € [—20, 500].
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Double Pendulum System: Solutions

Consider the nonautonomous system given by

dU1

T U2+u1( —u} — 13), dﬂ:ul—f— 2( —u} —u3), t€[-20,500].

500 dt 500

\ ﬁ _ t Fine - Parareal —— Fine - GParareal
- 3 X > =« 10°
soll) J\QWMW £
s ¢ g

3107 10

&mmmmmmmeeee

Fine o GParareal + Parareal|

RN v
SIRV.ATAN P AN R
c . Radu F e '\M FENN
m -7W0 2‘0 4;0 6‘0 80 1 0 20 4;0 6‘0 80
(a) (b) (c)

Figure 6: Numerical results obtained solving the double pendulum system t € [0, 80].
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Double Pendulum System: Convergence
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Figure 7: lterations count k (max. J = 32) for various initial angles.
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Double Pendulum System: Convergence
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Figure 8: Speedup plot.
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Summary



We presented GParareal, a PinT algorithm that uses GP emulation to solve (low-dimensional)
[VPs in parallel.

= can converge in fewer iterations — lower wallclock time.

= solutions accurate wrt parareal.

= can use legacy solution data (from previous solve or uniform grids in RY).
= can solve problems that parareal fails to converge for.

Other results (see paper for full details!):

= Training GP comes at cost (Tgp) which must be small compared to F solve (complexity
analysis + experiments in paper show this).

TGpara = kTx + (k =+ 1)(-/ - k/2)Tg +Tcp.

Tpara

= Convergence result shows errors at iteration k bounded by accuracy of emulator:
J—(k+1)

k i .
lu(ty) — UF| < A ; A 1<k<j<J -



Open problems

= Can better/faster ML/PN methods be used to learn 7 — G: RY — R9? GPs struggle
with high-dimensional functions and so we need an alternative method to solve PDEs
(work in progress).

= Similar issue wrt the cost of running the GPs — need to be fast compared to fine solver.

= We currently approximate GP posterior using its mean (ignoring uncertainty). Can we
develop a truly probabilistic PinT algorithm? GParareal is a first positive step in this

direction.
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Scan the QR code for a link to the paper!
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Additional results (put complexity, convergence result, numerics
here).
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