GParareal: (Towards) A Probabilistic Time-Parallel ODE Solver

K. Pentland! M. Tamborrino! T. J. Sullivan? J. Buchanan® L. C. Appel®

Exascale Computing Challenges: Parallel-in-Time Algorithms
University of Exeter, UK
11 January 2023

LUniversity of Warwick, UK
2Alan Turing Institute, UK
3Culham Centre for Fusion Energy, UK

= We are interested in solving IVPs of the form

d

(TZ = F(t,u(t)) over te[to, T], with u(ty)=u®ecl CRY, (1)
using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap

less accurate coarse solver (G).

1/18

= We are interested in solving IVPs of the form
d
(TZ = F(t,u(t)) over te[to, T], with u(ty)=u®ecl CRY, (1)
using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap
less accurate coarse solver (G).
= We seek numerical solutions U; ~ u(t;) to (1) on a pre-defined mesh t = (to, ..., t)),

where tj;1 = tj + AT for fixed AT = (T — tp)/J.

1/18

= We are interested in solving IVPs of the form
du

o= f(t,u(t)) over te€lto, T], with u(ty)=u’ecll CR", (1)

using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap
less accurate coarse solver (G).

= We seek numerical solutions U; ~ u(t;) to (1) on a pre-defined mesh t = (to, ..., t)),
where tj;1 = tj + AT for fixed AT = (T — tp)/J.

= Computational budget does not allow F to be run over whole [ty, T] but does allow on

time slices [tj, tj+1] in parallel.

1/18

= We are interested in solving IVPs of the form
du

o= f(t,u(t)) over telt,T], with u(to)=u’ecld CRY, (1)

using two time-stepping schemes, an expensive high accuracy fine solver (F) and a cheap
less accurate coarse solver (G).

= We seek numerical solutions U; ~ u(t;) to (1) on a pre-defined mesh t = (to, ..., t)),
where tj;1 = tj + AT for fixed AT = (T — tp)/J.

= Computational budget does not allow F to be run over whole [ty, T] but does allow on
time slices [tj, tj+1] in parallel.

= Takeaway message: We propose the GParareal algorithm, a “parareal”-type algorithm
(Lions et al., 2001) that uses a Gaussian process (GP) emulator (trained on solution data
from F and G) to solve (1) in parallel.

= Motivation: Borrow ideas from probabilistic numerics (PN) to make more efficient use of

the simulation data generated within parareal and perhaps quantify uncertainty on the fly.

1/18

Parareal

Parareal: The algorithm

= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)

2/18

Parareal: The algorithm

= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)
= Iteration k > 1: propagate each approximation in (2) using F in parallel, on J
processors, to obtain F(UJQ) for j=0,...,J — 1. These values are then used in the
predictor-corrector (PC):
Ul = G(UN)+ F(USH = GUSY) for j=0,...,0—1. (3)
~——
predict correct

For pre-defined tolerance ¢ > 0, the solution UJ-" has converged up to time t; if

Uf —Uf Tt <e Vi<, (4)

2/18

Parareal: The algorithm

= Iteration k = 0: calculate approximate solutions to (1) sequentially using G, on a single
processor, such that

Uy =6(U)) j=0,....0—1 (2)
= Iteration k > 1: propagate each approximation in (2) using F in parallel, on J
processors, to obtain F(UJQ) for j=0,...,J — 1. These values are then used in the
predictor-corrector (PC):
Ul = G(UN)+ F(USH = GUSY) for j=0,...,0—1. (3)
~——
predict correct

For pre-defined tolerance ¢ > 0, the solution UJ-" has converged up to time t; if
Uf —Uf Tt <e Vi<, (4)
= Key point: Algorithm stops once | = J, “converging” in k (out of J) iterations.

2/18

Parareal: How it works

~ Y

to ty ta t3 tg ls

3/18

Parareal: How it works

F(Uy)

G(uy) | —

~ Y

to ty ta t3 tg ls

3/18

Parareal: How it works

A
F(U;) F(U7)
G(U?) | —
C C
to 131 to i3 ty ts 1t

3/18

Parareal: How it works

w4t F(U)) FUY)
G —— o)) | —

ty ts5

~ Y

3/18

Parareal: How it works

F(Uy)

GUY) ———— G} | —

0

~ Y

to ty ta t3 tg ls

3/18

Parareal: How it works

A
w4t F(U)) FUY)
GUo) — G /n
o UJO) Ujl /
o—
/ (//)
C
u? ¢
I :
to t to i3 ty ts 1t

3/18

Parareal: Convergence and Complexity

» After k iterations, the first k time slices (at minimum) are converged, as the exact initial
condition (ug) has been propagated by F at least k times.

= |f parareal converges in k = J iterations, the solution will be equal to the one found by
calculating (1) serially, at an even higher computational cost! Convergence in k < J
iterations is necessary if significant parallel speed-up is to be realised.

» Assume, assume running F over any [t;, tj;1], j € {0,...,J — 1}, takes wallclock time
Tr (denote time Tg similarly for G). Therefore, calculating (1) using F serially, takes
approximately Tgerial = JT £ seconds. Using parareal, the total wallclock time (in the
worst case, excluding any serial overheads) can be approximated by

k
k
Toara = JIg +E (T]:—l-(J—i)Tg):kT]:+(k+1)<J—>Tg. (5)
~— : 2

. :1 .
Iteration 0 ' Iterations 1 to k

= The approximate parallel speed-up is therefore

serial |:k (k) g]_l
S ar sera Ky (o KV Te] 6
para el J () 2J) Tr 5/1)8

GParareal

GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

2.5 T T T T T T T T T T T T
N —— True function f(z)
15¢

oth i(x*) and K(x*, x*) have analytical expressions (not shown for clarity).
a 5/18

GParareal: What is a GP emulator?

: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown function

0 0 . 2.5 T T T T T T
f(X) (Wlth known mean/COVarlance fUnCtIOnS) —— True function f(z) Prior uncertainty (95%)
2| | ——Prior mean 1
Fx) ~ N (u(x), K(x,x)). =) '
1
= 0
=
> \/ \/ '
1k
-1.5
24+
-2.5

oth fi(x*) and K(x*,x*) have analytical expressions (not shown for clarity).)
5/18

GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown function

f(x) (with known mean/covariance functions) 25— —
—Txu(hmcnonj Puul uncertainty (Jo%
21 | ——Prior mean Se un])l(s from prior
f(x) ~ N (u(x), K(x,x)). 15}
1
0.5
ORI
=
-0.5F
-1
15F
2+
-2.5

oth fi(x*) and K(x*,x*) have analytical expressions (not shown for clarity).)
5/18

GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown function

f(x) (with known mean/covariance functions) 25—
— True function f(z) Prior uncertainty (95%)
21 | ——Prior mean . Known values of f(z) |1
f(x) ~ N (u(x), K(x,x)). 15}]
1
= Step 2: Condition prior on known evaluations (red dots): _ OZ\ /\ /
(x,y) = (Xi’ f(Xi)>i:1,._.,N' \-045- \/ \/ |
-1F
15F
2l
-2.5

oth fi(x*) and K(x*,x*) have analytical expressions (not shown for clarity).)
5/18

GParareal: What is a GP emulator?

GP emulation: a way to statistically model an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown function

f(x) (with known mean/covariance functions) p————————————————————
—— True function f(z) Posterior uncertainty (95%)
2 | ——Posterior mean + Known values of f(z)
f(x) ~ N (u(x), K(x,x)). 15}

= Step 2: Condition prior on known evaluations (red dots):
(x,y) = (X"’ f(X")>f=1,...,N'

= Step 3: Obtain Gaussian posterior, which can be queried

at any unknown x*:

() | (x,) ~ N (), R(x*, ")) Fesas a0 23 a5 e

Both 2i(x*) and K(x*,x*) have analytical expressions (not shown for clarity).)
5/18

GParareal: The idea

Corrections in parareal PC based on information from single previous iteration — all
other solution information ignored in Markovian-like manner.

Our idea: improve corrections using GP emulator to reduce iterations k.

How? We re-formulate the PC

Ufir = F(UF) = (F =G+ G)(Uf) = G(Uf) +(F - G)(Uf). (7)
prediction correction

We use a GP emulator to model the correction term, trained on all previously obtained
evaluations of F and G ((x,y) is the dataset):

(F=G)(U) | (x,y) ~ N (a(Uf), K(UF, UF)). (8)

Whole Gaussian cannot be propagated in (7), so we approximate using the mean value
and carry out the refinement:

6/18

GParareal: How it works

A

u(t) |
—

F(Uy) Key

Y

i i to ty t

7/18

GParareal: How it works

A
Fwy) Key

u(t) ,
/ "
/ © UJ'D

Y

i i to ty t

7/18

GParareal: How it works

A
u(t) — F(U;) Key
g(Uy)
o Uy
— W)
//)
e
u §
+ + + + t

7/18

GParareal: How it works

A
u(t) — F()) Key
gy
o U
— FUY)
I F-9w)
//,
C
u0 ¢
to £ £ t3 1t

7/18

GParareal: How it works

A
u(t) — F()) Key
G(wy)
o W
—_—]—‘(U]O)
I F-9w)
// — 9O
)
Lo
u0 ¢
to ty ta ts 1

7/18

GParareal: How it works

A
u(t) — F()) Key
g(u?)
<o_ ° U
L — F)
I F-9w)
]: I — G(U})
e) T 5
Y i w(U;
- <0 N(GWUY) + p(Ub), KU}, UY))
i U1+l
to t ta ts 0

7/18

GParareal: How it works

A
u(t) —]:(U]') Key
<"T g(uy)
<0_&—’ . °
-‘_ —)
I F-9wy
// — W
X _
< : v
N N w(U;)
> <. N(9U)) + w@)), K(U;.U})
L Ufl+l
o t to t3 t

Key benefit: GParareal can re-use the 7 — G data in future GParareal simulations as “legacy
data” to pre-train the GP emulator and provide additional speedup — see the numerical
experiments later.

7/18

Numerical Experiments

FitzHugh—Nagumo model: Solutions

Consider the FitzZHugh—-Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 1962) given by

dU2 1

3
= — 2 4w, = ——(n—a+buw), te0,40]

3

We integrate divide the interval into J = 40 slices and set the tolerance for both GParareal and parareal
to e = 107°. We use solvers G = RK2 and F = RK4 with Ng = 160 and N = 1.6 x 10® steps
respectively. Note that the large value of Nx is required to ensure that F is expensive to run and that

parallel speedup can be realised (as both algorithms require Tg/Tx < 1),

—e—Parareal]
—e—GParareal |1
— — ~Tolerance

FitzHugh—Nagumo m Convergence

125|111 |11

3 - B - -

0.75
0.5

11

L Lln ki Lk L Lk

[B T R I B RN I

5 5
5 5
5 5 5
5 5 5
= 025 13 10 = 0.25 B8 5 5
L ofE 10 13 14 I s 5 5
2025 10 | 10 10| 11| 2 -0.25 B8 5 5 5
05 11 [RE 13 14 13 11| 10 0.5 IS 5 5 5
-0.75 BB 10 i 11 -0.75 IS 5 5 5
-1 ; 10 Y s 5 5 5
125 11| 125 5 5 5 5 5
L5 M9 9515 O B P15 Y0P AB° AT g2 15 OB PP M.
w {t =0) uy(t =0}

(a) Parareal (b) GParareal

Figure 2: Iterations count k (max. J = 40) for various initial values u® € [—1.25,1.25]°.

8/18

FitzHugh—Nagumo: Legacy Data

102 w \
—o—Parareal
GParareal can use legacy data to pre-train the emulator and —o—GParareal (no legacy)
1006 —e—GParareal (legacy)
solve faster! - - - - Tolerance

= Step 1: Solve FHN model using initial condition
u = (-1,1)T.

Max. absolute error

= Step 2: Store F and G solution data (= legacy data).

= Step 3: Re-initialise GParareal using legacy data to
solve for new initial condition u® = (0.75,0.25)T.

Accuracy of solutions with or without legacy data is similar

to that of parareal. Figure 3: lterations until convergence k
(with /without legacy data).

Additional experiments on nonautonomous and chaotic systems in paper!

9/18

Rossler system: Solution

= Next we solve the Rossler system,

dU1 . dU2 dU3 7 N
T up — us, ar dr b+ u3(u1 — €), (10)
with parameters (4, b, ¢) =(0.2,0.2,5.7) that cause the system to exhibit chaotic

behaviour (Rossler, 1976).

= uy + auw,

Fine
o GParareal
#* Parareal

10+

= Suppose we wish to integrate (10) over
t € [0,340] with initial values
uo = (0,—6.78,0.02)T and solvers G = RK1
and 7 = RK4. The interval is divided into
J = 40 time slices, Ng = 9 x 10* coarse steps, 5F

and Nz = 4.5 x 108 fine steps.
_10 L

= The convergence tolerance is set to ¢ = 107°. . . | |
-10 -5 0 5 10

uy

Rossler system: Convergence

104 . .
i —e—Parareal 4
£ —e—GParareal (no legacy) 15
g 102 —o—GParareal (legacy) 23
5 --- - Tolerance 14 3
i g2
5 bt &
2 0 1
100 A o
L et I\ 2 0 : P
R e NN - 2 L2 48163264
I it 11 2 o2 Processors
ER[MS Fine - Parareal = 10 o
10-15 Fine - GParareal (no legacy) % = e S o S
Fine - GParareal (legacy) =) 4 é
10° 10
‘;‘;' J PP 0 0 9 || —e— GParareal (legacy)
i U 0 - -- - Fine Solver
2 8
0 50 100 150 200 250 300 350 1234567 8 910111213141516171819 1 2 4 8 16 32 64
t k Processors
(a) (b) (c)

Figure 4: Numerical results obtained solving the Rossler system (10) over t € [0,340]. (a) The
corresponding absolute errors between solutions from GParareal and parareal vs. the fine solution. (b)
Maximum absolute errors from (4) of each algorithm at successive iterations k until tolerance ¢ = 10~°
is met. (c) Median wallclock times (taken over 5 runs) of each simulation against the number of
processors (up to 40). Inset: The corresponding parallel speedup vs. the serial wallclock time.

11/18

Rossler system: Discussion

= In this experiment, rather than obtaining legacy data by solving (10) using alternative
initial values, we instead generate such data by integrating over a shorter time interval.
This is particularly useful if we are unsure how long to integrate our system for, i.e. to
reach some long-time equilibrium state or reveal certain dynamics of the system, as is the
case in many real-world dynamical systems.

» The legacy simulation, integrating over [0,170], takes nine iterations to converge using
GParareal (ten for parareal), giving us approximately kJ?) =9 x 20 = 180 legacy
evaluations of F — G (results not shown).

Integrating (10) over the full interval [0, 340], GParareal converges in four iterations
sooner with the legacy data than without — refer to Figure 4(b). In Figure 4(c) we can
see that using the legacy data achieves a higher numerical speedup (3.4x) compared to
parareal (1.6x).

» Figure 4(a) illustrates GParareal retaining a similar numerical accuracy to parareal with
and without the legacy data. Note the steadily increasing errors for both algorithms is

due to the chaotic nature of the Rossler system. 12/18

Nonautonomous system: Solutions

Consider the nonautonomous system given by

duq dus t
= u2—|—u1(500 uf—ug), E:ul—f—uQ(%—uf—ug), t € [-20,500].

al (theory)
numerical)
(theory)
(numerical)

14}

[——Fine - Parareal —— Fine - GParareal|

12+

e
S =
w9 o
5 h

E

u; error

10
1015 &
10° o
5 10°
;‘ 1010
1015 0 0 1 | |
0 100 200 300 400 500 32 64 128 256 512
t J
(b) (c)

Figure 5: Numerical results obtained solving the nonautonomous system over t € [—20, 500].

13/18

Double Pendulum System: Solutions

Consider the nonautonomous system given by

dU1

T U2+u1(—u} — 13), dﬂ:ul—f— 2(—u} —u3), t€[-20,500].

500 dt 500

\ ﬁ _ t Fine - Parareal —— Fine - GParareal
- 3 X > =« 10°
soll) J\QWMW £
s ¢ g

3107 10

&mmmmmmmeeee

Fine o GParareal + Parareal|

RN v
SIRV.ATAN P AN R
c . Radu F e '\M FENN
m -7W0 2‘0 4;0 6‘0 80 1 0 20 4;0 6‘0 80
(a) (b) (c)

Figure 6: Numerical results obtained solving the double pendulum system t € [0, 80].

14/18

Double Pendulum System: Convergence

25 8 191721 25 23191721 6 0
H 30 23 15|14 |18 |17 | 22 2 8 | 26 17 |12] 16 | 13
15 9 16 |13 | 15| 16 | 17 | 22 | 22 [BL: 15 M 24 15 12 | 24 | 13 [BE
1 1914 |13 |15 |16 | 16 | 17 [P il 26 19 | 12 9 EEY 20 26
= 05 3 17 (13|16 | 15 | 16 | 16 22 P = o5 [EEMPEN 17 | 13 | 14 BEREECE 12 | 20 | 24 [BX
o 2217 |15 1515 15 | 17 | 22 I ot 23| 18 | 15 15 | 18 | 23 |l
T o5 [Pl 22 16 | 16 [15 | 16 | 13 | 17 [BEE T o5 PEN 24| 20 |12 IEREEE 12 | 13 | 17 T
1 N 17|16 |16 | 15 |13 | 14 | 19 Bl 26 20 FE : 12 | 19 6
15l 22 | 2217 |16 | 15 [13 | 16 9 15 [l 13 | 24 | 12 15 24 [BX
2 2217|1814 | 15|23 0 2 13|16 |12 | 17 6 28
25 21|17 | 19 8 2.5 Bl 6 21 |17 | 19 | 23 [BE
B N S LA I\ R N I S) B N S LA I\ R R T S)
w (t =0) uy (t = 0)
(a) Parareal (b) GParareal

Figure 7: lterations count k (max. J = 32) for various initial angles.

15/18

Double Pendulum System: Convergence

—#— Parareal (theory)

- -© - Parareal (numerical)
[|—*— GParareal (theory) 8
- © - GParareal (numerical) ,
- -- - Fine Solver ,

N
w

N
o

Speedup
=
w

10r

Figure 8: Speedup plot.

16/18

Summary

We presented GParareal, a PinT algorithm that uses GP emulation to solve (low-dimensional)
[VPs in parallel.

= can converge in fewer iterations — lower wallclock time.

= solutions accurate wrt parareal.

= can use legacy solution data (from previous solve or uniform grids in RY).
= can solve problems that parareal fails to converge for.

Other results (see paper for full details!):

= Training GP comes at cost (Tgp) which must be small compared to F solve (complexity
analysis + experiments in paper show this).

TGpara = kTx + (k =+ 1)(-/ - k/2)Tg +Tcp.

Tpara

= Convergence result shows errors at iteration k bounded by accuracy of emulator:
J—(k+1)

k i .
lu(ty) — UF| < A ; A 1<k<j<J -

Open problems

= Can better/faster ML/PN methods be used to learn 7 — G: RY — R9? GPs struggle
with high-dimensional functions and so we need an alternative method to solve PDEs
(work in progress).

= Similar issue wrt the cost of running the GPs — need to be fast compared to fine solver.

= We currently approximate GP posterior using its mean (ignoring uncertainty). Can we
develop a truly probabilistic PinT algorithm? GParareal is a first positive step in this

direction.

18/18

Scan the QR code for a link to the paper!

Acknowledgements Funding provided by EPSRC (grant EP/S022244/1), Culham Centre for Fusion Energy, and Euratom (No. 633053). Registration and travel

support for this presentation was provided by the Society for Industrial and Applied Mathematics.

18/18

Additional results (put complexity, convergence result, numerics
here).

References 1

R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1:445-466, 1961.
doi:10.1016/S0006-3495(61)86902-6.

J. L. Lions, Y. Maday, and G. Turinici. Résolution d’'EDP par un schéma en temps < pararéel>>. Comptes Rendus Acad.
Sci. Ser. | Math., 332(7):661-668, 2001. doi:10.1016/S0764-4442(00)01793-6.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50:
2061-2070, 1962. doi:10.1109/JRPROC.1962.288235.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive computation and machine
learning. MIT Press, 2006. ISBN 026218253X.

O. E. Rossler. An equation for continuous chaos. Phys. Lett. A, 57:397-398, 1976. doi:10.1016,/0375-9601(76)90101-8.

https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/0375-9601(76)90101-8

	Appendix

