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Motivation and Aims The stochastic parareal algorithm cont.
Complex models in science often require the, computationally expensive, numerical integration
of large-scale systems of ordinary or partial differential equations (ODEs or PDEs). For Faeucouedt
spatially dependent problems, domain decomposition methods can be exploited to achieve signif- Step 1: Run parareal up to the end of iteration k = 1.
icant parallel speed-up on high performance computers (HPCs). For initial value problems Step 2: For k=2to N
(IVPs), integration wallclock speeds do, however, bottleneck in the time dimension, forcing one to
consider using time-parallel methods. (i) If d > 1, calculate correlations matrices at each T}, using fine propagations from

previous iteration®.

Parareal®? is a well established time-parallel numerical method for solving a variety of IVPs - includ- (ii) k—1 k—1

At each unconverged T',, sample M — 1 initial values e, 7, . . ., o, 3y g from @, fixing
the final sample aﬁ_]& = Uk~1. Propagate them all in parallel using F.

ing fusion plasma dynamics®. It locates a solution determinstically in k; € {1,..., N} iterations,
yielding a fixed parallel speed up (roughly N/k;) compared to a serial numerical integrator.

(iii)  Select most accurate &*~! at each T}, by locating the most continuous trajectory,

The aims of this project were to: using all F (afg_ﬂ%) trajectories over [Ty, T|. Propagate the optimal samples using G.

e develop a stochastic parareal algorithm that locates a solution to an IVP in fewer than (iv) Predict and correct at each T}, using the more accurate initial values:
kq iterations, thus increasing parallel speed-up. o o
Uk = G(UL_,) + F(eh™h) — Gak™h).

e illustrate the numerical performance of stochastic parareal on small IVPs. —— ~ d (4)
predict new correction

(v) Carry out the convergence check - Step 3(iii) of parareal.

A
The parareal algorithm F(u)
The problem is to solve the following (nonlinear) system of d € N ODEs in parallel: Samp;g( e N
m - En My Op
d .................... I
™ f(u(t),t) on te [To,Tn], with u(Tp) =u’. (1) f/
dt u(t) - o
R g —
Setup ! T
e Discretise problem (1) into N sub-problems on N sub-intervals - assiging one processor to : | —
each (N — 6 in Flg 1) 0 E E .......................................................... Zoom Ty
|
|

e Choose two numerical integrators to carry out integration from 7;, to T}, 1 : P B 4 l ———— I >

—> JF — fine integrator with slow execution but high accuracy. Ty T Ty T3 T, t

—> — int t ith fast tion but 1 : . : : 1 : : : :
7S CEIE e e Ot SR e s e Lt | Sy Ty Figure 2: Sampling and propagation process within stochastic parareal following iteration £ = 1.

Goal The “true” solution is given in black, the £k = 0 fine solutions in blue, the £ = 1 coarse solutions in
* Integrating /N sub-problems in parallel using / requires the true initial values U, at each 7, red, and the £ = 1 PC solutions as red dots. With M = 5, four samples a}%m (green dots) are taken at
(n > 1) — parareal iteratively locates these Uy, using runs of F and §G. Ty and T3 from some ®. These values, along with U; and U; themselves, are propagated (in parallel)
forward in time using F (green lines). The optimally chosen &} are also propagated using G.
Pseudocode
Step 1: Set counter k = 0, defining U* as the numerical solution to (1) at time T}, and
. . k L 0
tteration k. Note Ug = u” vk. Test problem: the Lorenz system
Step 2: (Calculate initial guesses UY using G serially: UY = G(UY_,). . . .
We consider the chaotic regime of the Lorenz system
Step 3: Fork=1to N
(i) Propagate solutions on each sub-interval using F in parallel, calculating F(U~_1). gt oo\, T T ettty e, T = itz g s,
(ii) Sequentially calculate Q(Uﬁ_ﬂ, then use the predictor-corrector (PC): that generates exponentially diverging trajectories upon small perturbations of the initial values.
Equation (4) is solved for t € [0, 18] with u(0) = (—15, —15,20)!. Parareal solves (4) in kg = 20 (out
U’fb — g(UfL—Q e ]—‘(UZ:D _ g(U’fl:i) , 5 of 50) iterations, stopping at tolerance ¢ = 10~°. The numerical results for stochastic parareal
— ~- g (2) (Fig. 3) show that
Predict Correct
e« given a sufficient value of M, the estimated probability that k£, < k; approaches one,
(iii)  If the tolerance ||[U¥ — U*~1|| < € is met for all n, break the loop and return U¥. regardless of the sampling rule chosen.
Else continue iterations for the unconverged 7T;,. e the estimated expected value of k,, E(k;), decreases for increasing M.
e generating correlated samples, rather than uncorrelated ones, improves performance.
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Figure 3: (Left panel) Estimated probabilities that ks < kg against sample number M for the
Figure 1: First iteration of parareal to obtain the fine (“true”) solution of a single ODE (black line). four correlated (solid lines) and uncorrelated (dashed lines) sampling rules. (Right panel) Estimated
The first simulations of G and F are given in yellow and blue respectively; and the second simulation expectation of ks against M for each sampling rule. Distributions in both panels were calculated by
of G in red. The red dots represent the PC solutions after applying rule (2). simulating 2000 independent realisations of stochastic parareal for each M.

The stochastic parareal algorithm Conclusions and future work

Aim: Parareal is deterministic, providing fixed parallel speed-up (N/kg) for a given IVP. We want Given sufficiently many SamPIGS M, Sto.c.hastic par.areal converges in .fewer iterations
to incorporate randomness to converge in ks < kg iterations = increased speed-up (N/ks > N/kg). (ks < kq) than parareal with probability one = increased parallel efficiency.

Stochastic solutions (on average) maintain accuracy compared to the solution given by
parareal (results not shown?).

At each T, a single deterministic initial * Information about initial values at the ditf- Future work involves developing methods that scale for much larger systems. The processors

k—1 - . . . .
value, U, _7, is used in the correction term ferent temporal resolutions is used to con- required scale with M - problematic if high sampling needed. We plan to develop methods from a

of eq. (2). struct ¢. It uses: more Bayesian perspective, utilising existing work from the field of probabilistic numerics.

— marginal means, uf;:l[.

Deterministic to stochastic Stochastic sampling rules

We want to improve the correction at
each T),,_1 by choosing more accurate ini- — marginal standard deviations, o
tial values. —~ correlation matrix, R¥_1.

k—1
n—1-
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