

# Stochastic parareal: an application of probabilistic methods to time-parallelisation

 Kamran Pentland<sup>1</sup>, Massimiliano Tamborrino<sup>2</sup>, Debasmita Samaddar<sup>3</sup>, Lynton Appel<sup>3</sup>
<sup>1</sup>Mathematics Institute, University of Warwick

<sup>2</sup>Department of Statistics, University of Warwick

<sup>3</sup>Culham Centre for Fusion Energy, UK Atomic Energy Authority

## Motivation and Aims

Complex models in science often require the, computationally expensive, numerical integration of large-scale systems of ordinary or partial differential equations (ODEs or PDEs). For spatially dependent problems, domain decomposition methods can be exploited to achieve significant parallel speed-up on high performance computers (HPCs). For initial value problems (IVPs), integration wallclock speeds do, however, bottleneck in the time dimension, forcing one to consider using time-parallel methods.

Parareal<sup>1,2</sup> is a well established time-parallel numerical method for solving a variety of IVPs - including fusion plasma dynamics<sup>3</sup>. It locates a solution deterministically in  $k_d \in \{1, \dots, N\}$  iterations, yielding a fixed parallel speed up (roughly  $N/k_d$ ) compared to a serial numerical integrator.

The aims of this project were to:

- develop a stochastic parareal algorithm that locates a solution to an IVP in fewer than  $k_d$  iterations, thus increasing parallel speed-up.
- illustrate the numerical performance of stochastic parareal on small IVPs.

## The parareal algorithm

The problem is to solve the following (nonlinear) system of  $d \in \mathbb{N}$  ODEs in parallel:

$$\frac{du}{dt} = f(u(t), t) \text{ on } t \in [T_0, T_N], \text{ with } u(T_0) = u^0. \quad (1)$$

### Setup

- Discretise problem (1) into  $N$  sub-problems on  $N$  sub-intervals - assigning one processor to each ( $N = 6$  in Fig. 1).
- Choose two numerical integrators to carry out integration from  $T_n$  to  $T_{n+1}$ :
  - $\mathcal{F}$  - fine integrator with slow execution but high accuracy.
  - $\mathcal{G}$  - coarse integrator with fast execution but low accuracy.

### Goal

- Integrating  $N$  sub-problems in parallel using  $\mathcal{F}$  requires the true initial values  $U_n$  at each  $T_n$  ( $n \geq 1$ ) → parareal iteratively locates these  $U_n$  using runs of  $\mathcal{F}$  and  $\mathcal{G}$ .

### Pseudocode

```

Step 1: Set counter  $k = 0$ , defining  $U_n^k$  as the numerical solution to (1) at time  $T_n$  and iteration  $k$ . Note  $U_0^k = u^0 \forall k$ .
Step 2: Calculate initial guesses  $U_n^0$  using  $\mathcal{G}$  serially:  $U_n^0 = \mathcal{G}(U_{n-1}^0)$ .
Step 3: For  $k = 1$  to  $N$ 
  (i) Propagate solutions on each sub-interval using  $\mathcal{F}$  in parallel, calculating  $\mathcal{F}(U_{n-1}^{k-1})$ .
  (ii) Sequentially calculate  $\mathcal{G}(U_{n-1}^k)$ , then use the predictor-corrector (PC):
    
$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{Predict}} + \underbrace{\mathcal{F}(U_{n-1}^{k-1}) - \mathcal{G}(U_{n-1}^{k-1})}_{\text{Correct}}. \quad (2)$$

  (iii) If the tolerance  $\|U_n^k - U_n^{k-1}\|_\infty < \varepsilon$  is met for all  $n$ , break the loop and return  $U_n^k$ . Else continue iterations for the unconverged  $T_n$ .

```

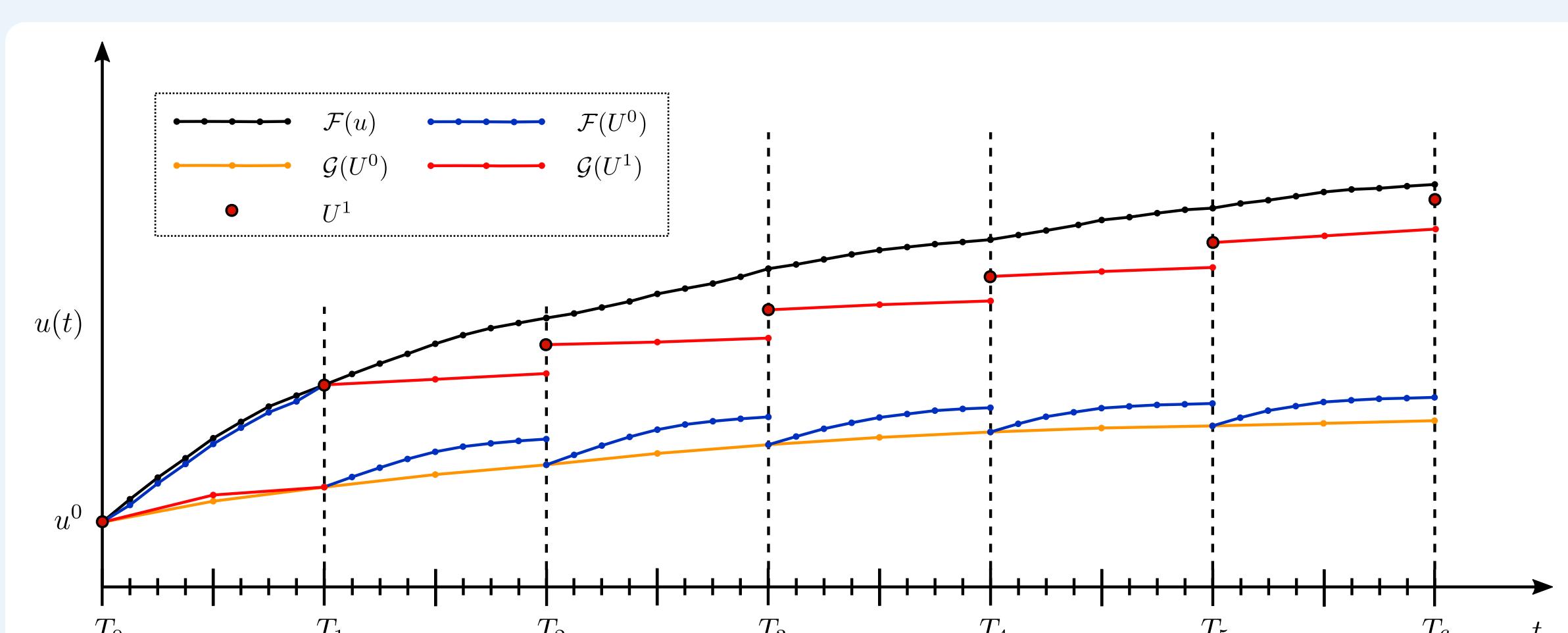


Figure 1: First iteration of parareal to obtain the fine ("true") solution of a single ODE (black line). The first simulations of  $\mathcal{G}$  and  $\mathcal{F}$  are given in yellow and blue respectively; and the second simulation of  $\mathcal{G}$  in red. The red dots represent the PC solutions after applying rule (2).

## The stochastic parareal algorithm

**Aim:** Parareal is deterministic, providing fixed parallel speed-up ( $N/k_d$ ) for a given IVP. We want to incorporate randomness to converge in  $k_s < k_d$  iterations ⇒ increased speed-up ( $N/k_s > N/k_d$ ).

### Deterministic to stochastic

- At each  $T_n$ , a single deterministic initial value,  $U_{n-1}^{k-1}$ , is used in the correction term of eq. (2).
- We want to improve the correction at each  $T_{n-1}$  by choosing more accurate initial values.
- To do this, we sample  $M$  initial values  $\alpha_{n-1,m}^{k-1} \sim \Phi$  for  $m = 1, \dots, M$ , randomly from a  $d$ -dimensional probability distribution  $\Phi$ .
- All samples are propagated in parallel using  $\mathcal{F}$ , after which the most accurate sample (see next section) is chosen to replace  $U_{n-1}^{k-1}$  in eq. (2) and thus obtain faster convergence.

### Stochastic sampling rules

- Information about initial values at the different temporal resolutions is used to construct  $\Phi$ . It uses:
  - marginal means,  $\mu_{n-1}^{k-1}$ .
  - marginal standard deviations,  $\sigma_{n-1}^{k-1}$ .
  - correlation matrix,  $R_{n-1}^{k-1}$ .
- We test four sampling rules to determine whether the distribution family or its parameters has the greater impact on performance.
- Sampling rules 1 & 2 are multivariate Gaussians and rules 3 & 4 are  $t$ -copulas:
  - $\mu_{n-1}^{k-1} = \mathcal{F}(U_{n-2}^{k-2})$  (rules 1 & 3).
  - $\mu_{n-1}^{k-1} = U_{n-2}^{k-1}$  (rules 2 & 4).
  - $\sigma_{n-1}^{k-1} = |\mathcal{G}(U_{n-2}^{k-1}) - \mathcal{G}(U_{n-2}^{k-2})|$  (all rules).

## The stochastic parareal algorithm cont.

### Pseudocode

```

Step 1: Run parareal up to the end of iteration  $k = 1$ .
Step 2: For  $k = 2$  to  $N$ 
  (i) If  $d > 1$ , calculate correlations matrices at each  $T_n$  using fine propagations from previous iteration4.
  (ii) At each unconverged  $T_n$ , sample  $M - 1$  initial values  $\alpha_{n,1}^{k-1}, \dots, \alpha_{n,M-1}^{k-1}$  from  $\Phi$ , fixing the final sample  $\alpha_{n,M}^{k-1} = U_n^{k-1}$ . Propagate them all in parallel using  $\mathcal{F}$ .
  (iii) Select most accurate  $\hat{\alpha}_n^{k-1}$  at each  $T_n$  by locating the most continuous trajectory, using all  $\mathcal{F}(\alpha_{n,m}^{k-1})$  trajectories over  $[T_0, T_N]$ . Propagate the optimal samples using  $\mathcal{G}$ .
  (iv) Predict and correct at each  $T_n$  using the more accurate initial values:
    
$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{predict}} + \underbrace{\mathcal{F}(\hat{\alpha}_n^{k-1}) - \mathcal{G}(\hat{\alpha}_n^{k-1})}_{\text{new correction}}. \quad (4)$$

  (v) Carry out the convergence check - Step 3(iii) of parareal.

```

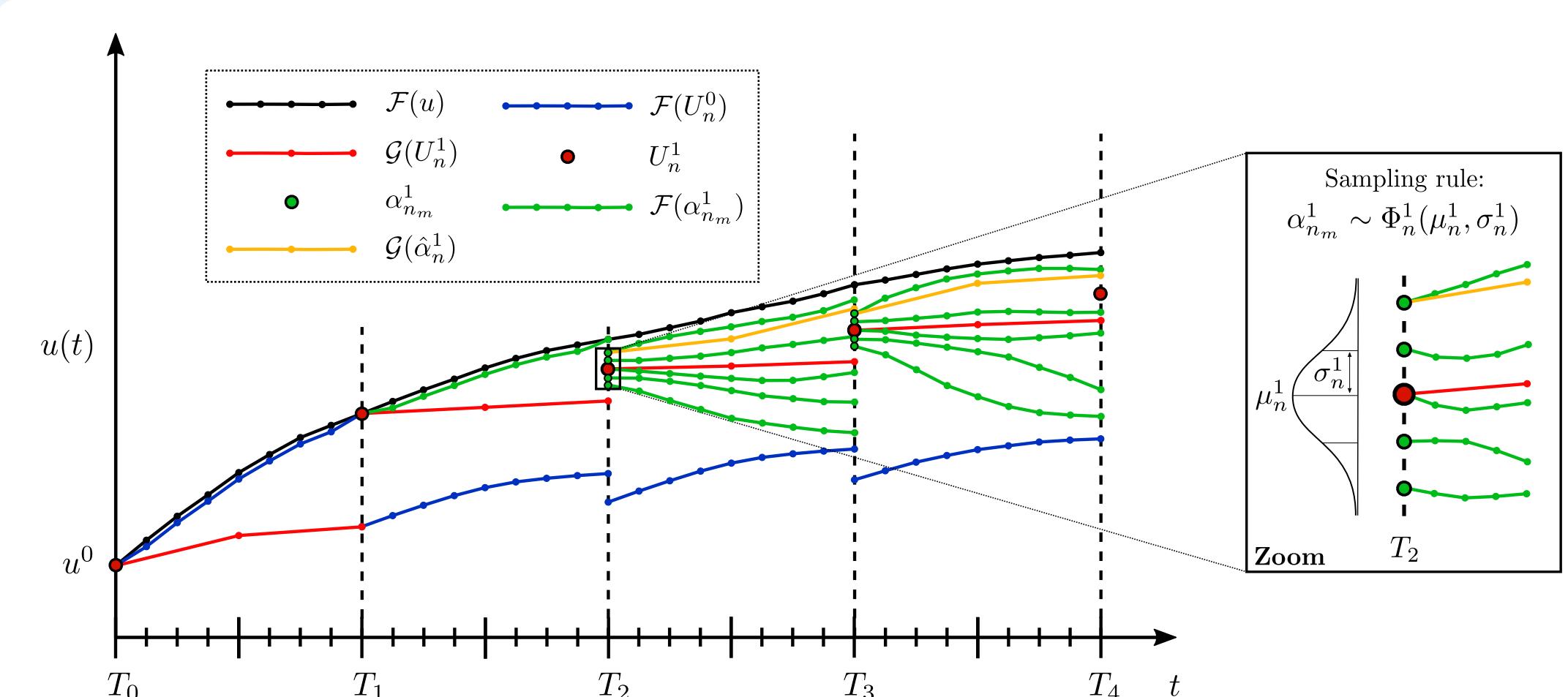


Figure 2: Sampling and propagation process within stochastic parareal following iteration  $k = 1$ . The "true" solution is given in black, the  $k = 0$  fine solutions in blue, the  $k = 1$  coarse solutions in red, and the  $k = 1$  PC solutions as red dots. With  $M = 5$ , four samples  $\alpha_{n,m}^1$  (green dots) are taken at  $T_2$  and  $T_3$  from some  $\Phi$ . These values, along with  $U_2^1$  and  $U_3^1$  themselves, are propagated (in parallel) forward in time using  $\mathcal{F}$  (green lines). The optimally chosen  $\hat{\alpha}_n^1$  are also propagated using  $\mathcal{G}$ .

## Test problem: the Lorenz system

We consider the chaotic regime of the Lorenz system

$$\frac{du_1}{dt} = 10(u_2 - u_1), \quad \frac{du_2}{dt} = 28u_1 - u_1u_3 - u_2, \quad \frac{du_3}{dt} = u_1u_2 - \frac{8}{3}u_3, \quad (4)$$

that generates exponentially diverging trajectories upon small perturbations of the initial values. Equation (4) is solved for  $t \in [0, 18]$  with  $u(0) = (-15, -15, 20)^T$ . Parareal solves (4) in  $k_d = 20$  (out of 50) iterations, stopping at tolerance  $\varepsilon = 10^{-8}$ . The numerical results for stochastic parareal (Fig. 3) show that

- given a sufficient value of  $M$ , the estimated probability that  $k_s < k_d$  approaches one, regardless of the sampling rule chosen.
- the estimated expected value of  $k_s$ ,  $\mathbb{E}(k_s)$ , decreases for increasing  $M$ .
- generating correlated samples, rather than uncorrelated ones, improves performance.

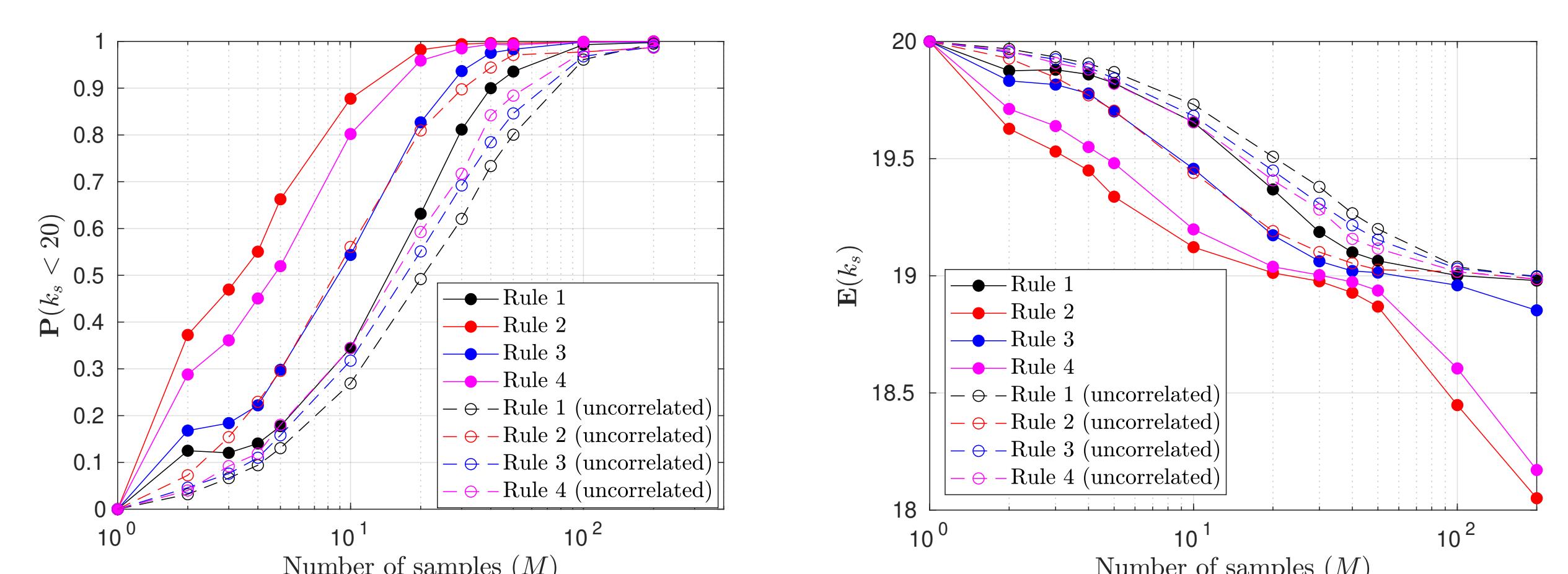


Figure 3: (Left panel) Estimated probabilities that  $k_s < k_d$  against sample number  $M$  for the four correlated (solid lines) and uncorrelated (dashed lines) sampling rules. (Right panel) Estimated expectation of  $k_s$  against  $M$  for each sampling rule. Distributions in both panels were calculated by simulating 2000 independent realisations of stochastic parareal for each  $M$ .

## Conclusions and future work

- Given sufficiently many samples  $M$ , stochastic parareal converges in fewer iterations ( $k_s < k_d$ ) than parareal with probability one ⇒ increased parallel efficiency.
- Stochastic solutions (on average) maintain accuracy compared to the solution given by parareal (results not shown<sup>4</sup>).

Future work involves developing methods that scale for much larger systems. The processors required scale with  $M$  - problematic if high sampling needed. We plan to develop methods from a more Bayesian perspective, utilising existing work from the field of probabilistic numerics.

## Acknowledgements and References

The authors gratefully acknowledge funding from CCFE, EPSRC (EP/S022244/1), the EUROfusion consortium, and the Euratom programme (no. 633053).

- [1] Lions *et al.*, 2001, *Résolution d'EDP par un schéma en temps pararéel*. Comptes Rendus de l'Academie des Sciences - Series I: Mathematics, 332(7), pp. 661–668.
- [2] Gander and Vandewalle, 2007, *Analysis of the parareal time-parallel time-integration method*, SIAM Journal on Scientific Computing, 29(2), pp. 556–578.
- [3] Samaddar *et al.*, 2010, *Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm*, J. of Comp. Phys. 229(18), pp. 6558–6573.
- [4] Pentland *et al.*, 2021, *Stochastic parareal: an application of probabilistic methods to time-parallelisation*. In preparation.