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(I) Motivation and aims

*  Want to numerically integrate large-scale initial value problems (IVPs).
> Systems of ordinary/partial differential equations.

> High wallclock runtimes, even using existing parallel methods.

* To extract further parallel speed-up, we must consider parallelising in time.
> Counter-intuitive (i.e. future solutions states depend upon previous states).
> Number of existing methods (multiple shooting type, multigrid etc).

> All of which are deterministic (i.e. provide fixed speed-up).
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(I) Motivation and aims

* Parareal' is a one such time-parallel algorithm.
> Works on range of IVPs (i.e. molecular, fluid dynamics).
> Uses two integrators + predictor-corrector to converge iteratively.
> Locates solution in fixed number of iterations, yielding fixed parallel speed-up.

> Provides speed-up of approx. x10 vs. serial solvers — including plasma dynamics?.

* Many variants of parareal exist to reduce wallclock time:
> Using adaptive time-stepping.

> Processor scheduling.

* None, however, reduce the number of iterations taken by parareal (fewer iterations = larger speed-up).

[1] - J. L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel, C. R. Math. Acad. Sci. Paris - Series I: Math., 332 (2001), pp. 661-668.
[2] - D. Samaddar, D. E. Newman, and R. Sanchez, Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm,
J. Comput. Phys., 229 (2010), pp. 6558-6573.
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(I) Motivation and aims

* Aim to extend parareal — stochastic parareal algorithm.
> Sample multiple potential solutions from probability distributions.
> “Most accurate” fed into parareal’s predictor-corrector.

> Converges in fewer iterations than the original algorithm, with given probability.

* Illustrate power of method by running numerical simulations on IVPs:
> estimating discrete distributions of the convergence rate for stochastic parareal.

> testing different sampling rules (i.e. different probability distributions).

> validating the accuracy of stochastic solutions vs. the deterministic solution.
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(IT) Overview of parareal

The idea Initial value

d
* Solve an IVP in parallel: d—? = f(u(t),t) t € [Ty, Tn] u(Tp) = u® “

* Parareal discretises into N sub-problems — each assigned a processor.

Sub-interval Coarse step Fine step
. '« ¥
[T |[iii‘[TTf]]'fi]| I TTTTT] M ITITT] M
Ty Ty T Tn o T Ty

* Integration carried out by:

> High accuracy, slow integrator F — runs in parallel.

> Lower accuracy, fast integrator G — runs serially.

* N initial values required to run F in parallel — parareal combines solvers to locate solution.
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(IT) Overview of parareal

How it works

Aiming for F solution (black line).
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(IT) Overview of parareal

How it works
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(ITI) Stochastic parareal

Parareal is already fairly robust...how do we improve its convergence rate?

Classic parareal Stochastic parareal

Instead, sample M initial values randomly
from some probability distribution.

A single deterministic initial value is used
iteratively in the PC:

Y

Uy =GUF )+ FUZ]) - GUiy).

Predict Correct

/<’ T, Distribution

Want to improve this correction. Choose ‘optimal sample’ from these.

Samples

---------.---------
500000 -
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(ITI) Stochastic parareal

How it works

1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).

u(t)
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(ITI) Stochastic parareal

How it works
1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).

2) Sample M initial values at unconverged sub-intervals: an,, ~ @ (un, 0p)
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(ITI) Stochastic parareal

How it works
1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).
2) Sample M initial values at unconverged sub-intervals: an,, ~ @ (un, 0p)

3) Run F in parallel on each sample (green lines).

Sampling rule:
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(ITI) Stochastic parareal

How it works

1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).
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How it works

1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).
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(ITI) Stochastic parareal

How it works

1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).

2) Sample M initial values at unconverged sub-intervals: an,, ~ (i, 0y)
3) Run F in parallel on each sample (green lines).
4) Select ‘optimal sample’ &, at each sub-interval by identifying the

smoothest F' trajectory over the entire time interval.
5) Run G on optimal samples (yellow lines).

6) Use new F and G values in PC:
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(ITI) Stochastic parareal
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How it works

1)

First iteration (k = 1) identical to parareal. Start with the PC values (red dots).
Sample M initial values at unconverged sub-intervals: ap, ~ ®(uy,0,)

Run F in parallel on each sample (green lines).

Select ‘optimal sample’ &, at each sub-interval by identifying the

smoothest F trajectory over the entire time interval.

Run G on optimal samples (yellow lines).

Use new F and G values in PC:

Ur=GU._ )+ F(a)_ 1) —G(a,_,).

predict new correction
Carry out error checks — then do further iterations
from step 2 if necessary. u(t)
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(ITI) Stochastic parareal

Properties
* Numerical solutions and convergence rate vary stochastically — i.e. probabilistic solutions.

* Fis run more frequently — requires M times more processors than parareal.

Sampling rules

* Known F and G solutions used to construct probability distributions.
* Vary with iteration and time step.

* Four rules tested.

* Two different means — either F values or the PC values.

* Standard deviation fixed — difference between G values.

* Correlations — taken between components of system.

| s ]
2
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(IV) Numerical results

2 T T T T T

One-dimensional nonlinear ODE s 7
. s solution

* F and G selected as explicit RK4 methods — G with much larger time steps. 10°
10 2L

3
* Parareal takes k, =25 iterations (out of 40). 7ot
D| 107

[
* Taking M = 2 (sampling rule 1) — convergence is stochastic and much 107
sooner than parareal! 107
102

0 5 10 15 20 25

Iteration (k)
Successive errors generated by both
10/17 algorithms at each iteration k.



(IV) Numerical results

One-dimensional nonlinear ODE

Sampling rule 1 (Normal distrib.)

[EnY

Estimate distributions for k, — ran algorithm 2000 times

for each M.

* If M >1 — we better the parareal result with certainty.

* As M increases — k, decreases rapidly!

ElP(5 <k <7

EEP (7 <k, < 10)
[ P(10 < k, < 15)
I P (
EEP(

Probability
© ©o 0o o o o o o o
[ N w S [é)] [e)] ~ o] ©

15 < k, < 25)
k, = 25)

* Best scenario ks, =5 — 20 iterations sooner than parareal!

0
T I R O I I I R TR SRR
PSR ELELSCSS
* Demonstrates power of using stochastic sampling to reduce Number of samples (M)
convergence rate. Distributions of convergence rate k_for increasing M.

* Other rules perform very similarly.
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(IV) Numerical results

One-dimensional nonlinear ODE

* Median error of stochastic solution is smaller than deterministic error.

* Standard deviation of stochastic solutions is O(107'")

10°®
| P, solutions - F solution | (all 250)
——| P solution - F solution |
Median | P, solution - F solution |
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t

Absolute errors of: - 250 independent stochastic solutions vs. the F solver (light blue).
- median stochastic solution vs. F solution (black).

- parareal solution vs. F solution (red).
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(IV) Numerical results

Two-dimensional Brusselator system
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Next, we test performance using bivariate probability distributions on stiff system.

Parareal takes k; =7 iterations (out of 25).

Sampling close to F values (rules 1 and 3) perform best.

Generating correlated samples improves performance.

Stiffness does however demand more samples to reduce ks further and further.

F solution
o P, solution| |

Numerical solutions in phase
space over time.

' A
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. 4 0,7 —e—Rule 3
03 //// //F{ —o—Rule 4 1
/i /// — & —Rule 1 (uncorrelated)
02 n//@ — & —Rule 2 (uncorrelated) |
y // — & —Rule 3 (uncorrelated)
o1y i — & —Rule 4 (uncorrelated)| |
10° 10t 102

Number of samples (M)

Estimated probabilities of converging in
fewer iterations than deterministic parareal.

Probability

0.7 i

© 0o ©o o o o
PN w0 oo

R O T RO

L L.
LS
Number of samples (M)

Estimated discrete distributions of

ks, for sampling rule 1.



(IV) Numerical results

Three-dimensional Lorenz system

* Chaotic system — exponentially diverging trajectories.

* Parareal takes k; =20 iterations (out of 50).

* Sampling close to PC values (rules 2 and 4) perform best in this case.
* Generating correlated samples, again, improves performance.

* Best convergence of ks =16 in small fraction of runs with M = 1000.

1 ‘ s o 1
T j=) 7/ /7
F solution 09 t 8 ;a//// 4 0.9
o P, solution 4 @/O///
0.8 - //% ? 1 0.8 ¢
T 7
0.7 B N 0.7
/, +
S 06 g2 £ 06
v )2/ =205
. 05 4 ///P/ 2
1, —e—Rule 1 =04
Q04 f /s |—e—Rule 2 A
"/ |—e—Rule3 0.3
03 r 0] —e—Rule 4
2% 0.2
02 J — e —Rule 1 (uncorrelated)
J<§ i — & —Rule 2 (uncorrelated) 0.1
0.1 r & — o —Rule 3 (uncorrelated)
A ;8 z | — & —Rule 4 (uncorrelated) 0
10° 10! 102
Number of samples (M) Number of samples (M)
Numerical solutions in phase Estimated probabilities of converging in Estimated discrete distributions of
space over time. fewer iterations than deterministic parareal. k, for sampling rule 2.
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(V) Conclusions and future work

Conclusions

* Developed a stochastic parareal algorithm — can better the convergence rate of parareal.
* Sampling from probability distributions — increases probability of locating true solution.

* Results illustrate that:

> Given sufficient samples (M) — probability of beating parareal approaches one.

> Expected value of k, decreases for increasing M.

> Accuracy of stochastic solutions is maintained, often better, than parareal.

> Choice of marginal means has more impact than type of distribution — however no clear “optimal” sampling rule.

> Generating correlated samples improves performance.
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(V) Conclusions and future work
Future work
* Does algorithm scale for much larger systems? — long term goal to apply these methods to plasma simulations.
*  Number of processors required scales with M — problematic if large amount of sampling required.

* Develop sampling rules/alternative methods that adapt to the problem being solved.
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Thank you for listening! Questions?
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