

Stochastic parareal: a novel application of probabilistic methods to time-parallelisation

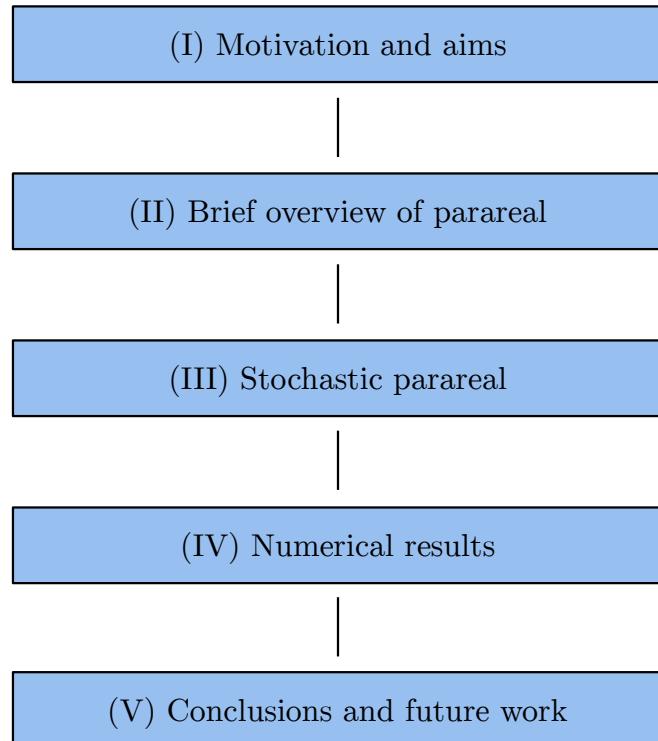
Kamran Pentland¹, Massimiliano Tamborrino², Debasmita Samaddar³, and Lynton Appel³

¹Mathematics Institute, University of Warwick

²Department of Statistics, University of Warwick

³Culham Centre for Fusion Energy, UKAEA

Structure of the talk



(I) Motivation and aims

- Want to numerically integrate large-scale **initial value problems** (IVPs).
 - Systems of ordinary/partial differential equations.
 - High **wallclock runtimes**, even using existing parallel methods.
- To extract further parallel speed-up, we must consider **parallelising in time**.
 - Counter-intuitive (i.e. future solutions states depend upon previous states).
 - Number of existing methods (multiple shooting type, multigrid etc).
 - All of which are **deterministic** (i.e. provide fixed speed-up).

(I) Motivation and aims

- **Parareal**^[1] is a one such time-parallel algorithm.
 - Works on range of IVPs (i.e. molecular, fluid dynamics).
 - Uses **two integrators + predictor-corrector** to converge iteratively.
 - Locates solution in **fixed number of iterations**, yielding **fixed parallel speed-up**.
 - Provides speed-up of approx. x10 vs. serial solvers – **including plasma dynamics**^[2].
- Many variants of parareal exist to reduce wallclock time:
 - Using adaptive time-stepping.
 - Processor scheduling.
- None, however, **reduce the number of iterations** taken by parareal (**fewer iterations = larger speed-up**).

[1] - J. L. Lions, Y. Maday, and G. Turinici, *Résolution d'EDP par un schéma en temps pararéel*, C. R. Math. Acad. Sci. Paris - Series I: Math., 332 (2001), pp. 661–668.

[2] - D. Samaddar, D. E. Newman, and R. Sánchez, *Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm*, J. Comput. Phys., 229 (2010), pp. 6558–6573.

(I) Motivation and aims

- Aim to extend parareal → **stochastic parareal algorithm**.
 - Sample **multiple** potential solutions from **probability distributions**.
 - “Most accurate” fed into parareal’s **predictor-corrector**.
 - Converges in **fewer iterations than the original algorithm**, with given probability.
- Illustrate power of method by running **numerical simulations** on IVPs:
 - estimating **discrete distributions** of the **convergence rate** for stochastic parareal.
 - testing different **sampling rules** (i.e. different probability distributions).
 - validating the **accuracy** of stochastic solutions vs. the deterministic solution.

Focus is on **convergence rates**, not wallclock runtimes.

Take home message

Parareal converges **deterministically** (**parallel speed-up is fixed**) → stochastic sampling used to **reduce the number of iterations**.

(II) Overview of parareal

The idea

- Solve an IVP in parallel: $\frac{du}{dt} = f(u(t), t)$ $t \in [T_0, T_N]$ $u(T_0) = u^0$ Initial value

- Parareal discretises into N sub-problems \rightarrow each assigned a processor.

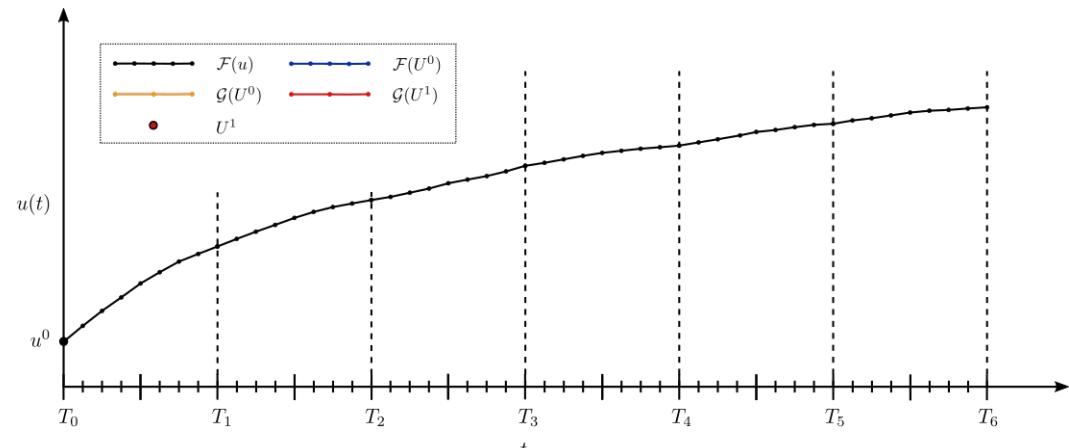


- Integration carried out by:
 - **High accuracy, slow integrator F** \rightarrow runs in parallel.
 - **Lower accuracy, fast integrator G** \rightarrow runs serially.
- N initial values **required** to run F in parallel \rightarrow parareal **combines solvers** to locate solution.

(II) Overview of parareal

How it works

Aiming for F solution (black line).

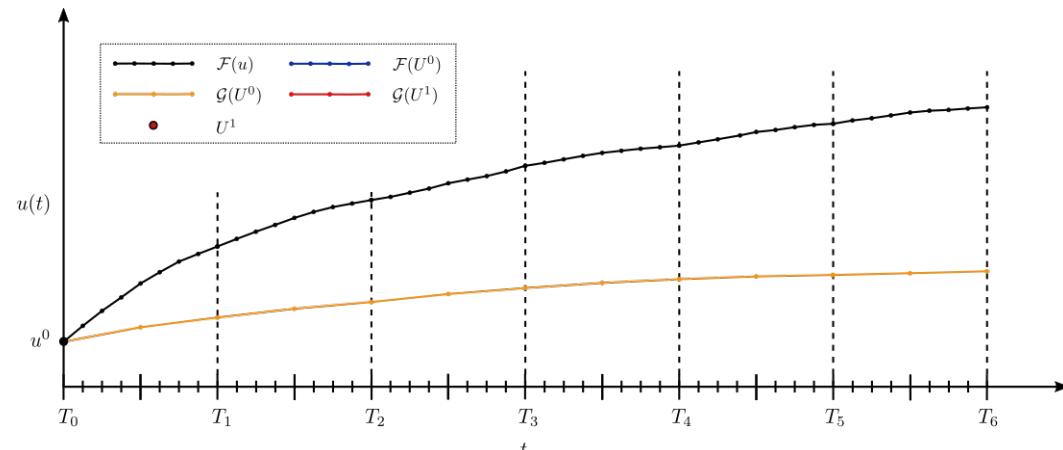


(II) Overview of parareal

How it works

Aiming for F solution (black line).

- 1) Run G serially over entire interval (yellow).

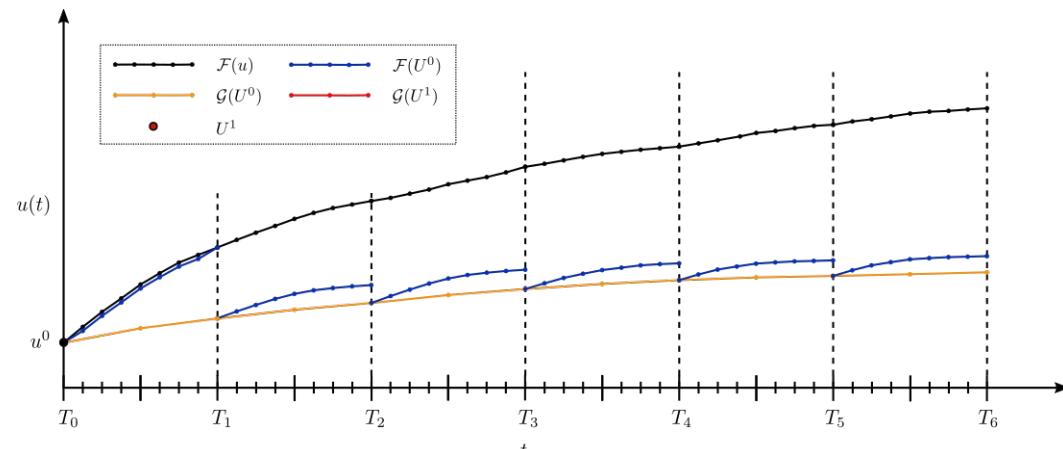


(II) Overview of parareal

How it works

Aiming for F solution (black line).

- 1) Run G **serially** over entire interval (yellow).
- 2) Run F **in parallel** to locate more accurate solutions (blue).



(II) Overview of parareal

How it works

Aiming for F solution (black line).

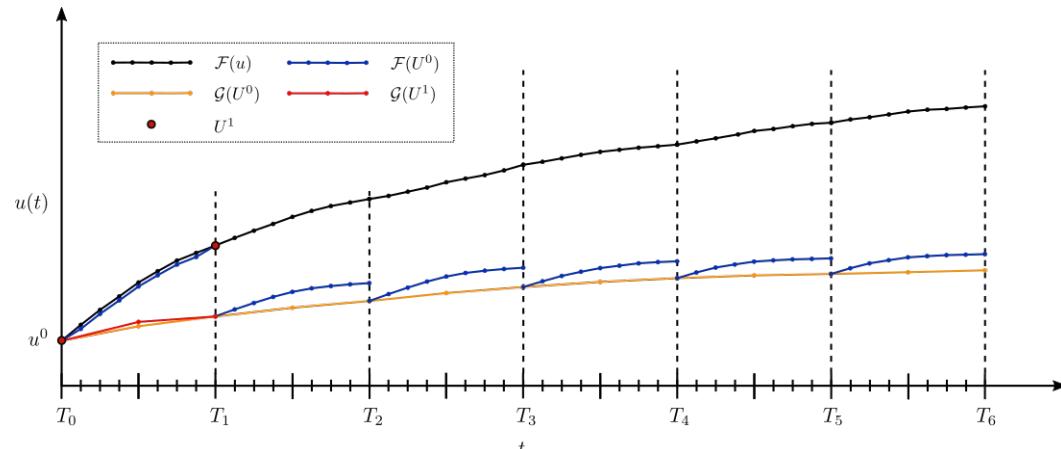
- 1) Run G **serially** over entire interval (yellow).
- 2) Run F **in parallel** to locate more accurate solutions (blue).
- 3) Run G (red) and use **predictor-corrector (PC)** to iteratively improve solution in each sub-interval.

Solution

$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{Predict}} + \underbrace{\mathcal{F}(U_{n-1}^{k-1}) - \mathcal{G}(U_{n-1}^{k-1})}_{\text{Correct}}$$

Iteration number

Time step



(II) Overview of parareal

How it works

Aiming for F solution (black line).

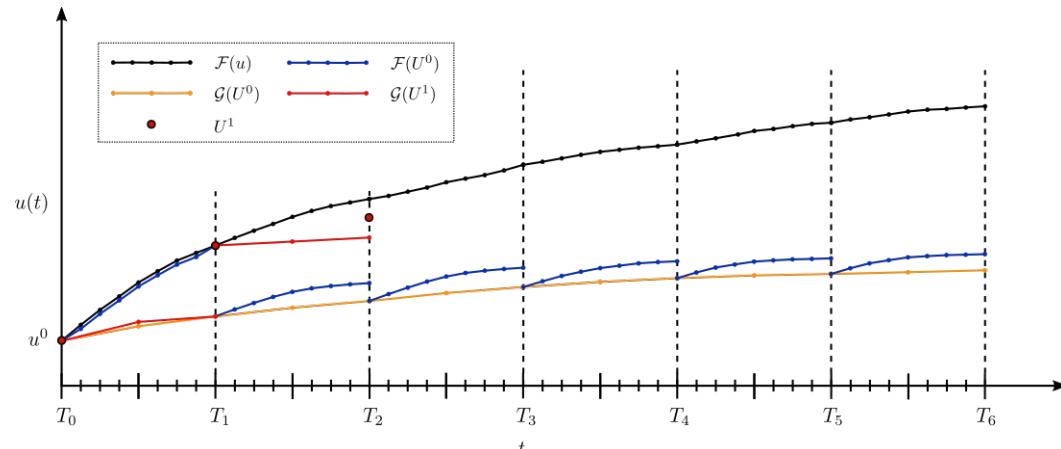
- 1) Run G **serially** over entire interval (yellow).
- 2) Run F **in parallel** to locate more accurate solutions (blue).
- 3) Run G (red) and use **predictor-corrector (PC)** to iteratively improve solution in each sub-interval.

Solution

$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{Predict}} + \underbrace{\mathcal{F}(U_{n-1}^{k-1}) - \mathcal{G}(U_{n-1}^{k-1})}_{\text{Correct}}$$

Iteration number

Time step



(II) Overview of parareal

How it works

Aiming for F solution (black line).

- 1) Run G **serially** over entire interval (yellow).
- 2) Run F **in parallel** to locate more accurate solutions (blue).
- 3) Run G (red) and use **predictor-corrector (PC)** to iteratively improve solution in each sub-interval.

Solution

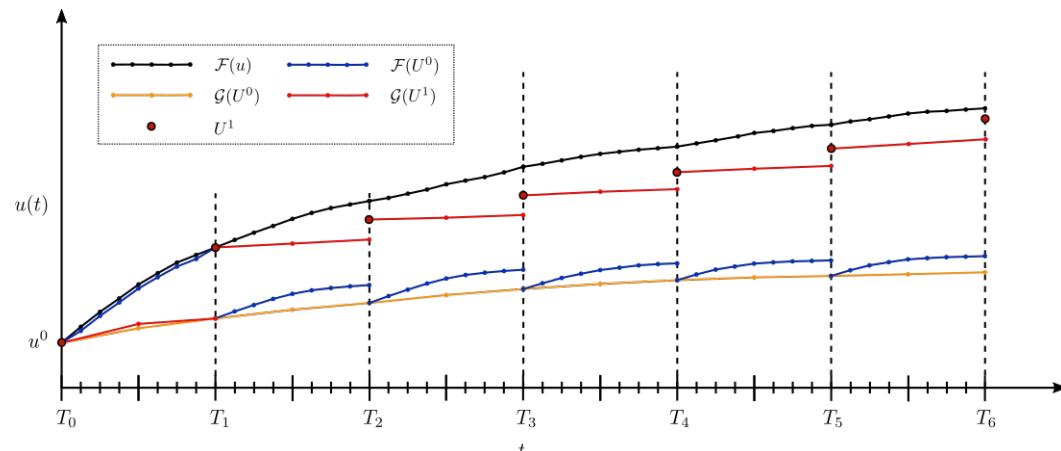
$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{Predict}} + \underbrace{\mathcal{F}(U_{n-1}^{k-1}) - \mathcal{G}(U_{n-1}^{k-1})}_{\text{Correct}}$$

Iteration number

Time step

- 4) Solution given by red dots. Repeat steps 2 and 3 until desired tolerance

$$\|U_i^k - U_i^{k-1}\|_\infty < \varepsilon \quad \forall i \in \{1, \dots, N\}.$$



(II) Overview of parareal

How it works

Aiming for \mathcal{F} solution (black line).

- 1) Run \mathcal{G} **serially** over entire interval (yellow).
- 2) Run \mathcal{F} **in parallel** to locate more accurate solutions (blue).
- 3) Run \mathcal{G} (red) and use **predictor-corrector (PC)** to iteratively improve solution in each sub-interval.

Solution

$$U_n^k = \underbrace{\mathcal{G}(U_{n-1}^k)}_{\text{Predict}} + \underbrace{\mathcal{F}(U_{n-1}^{k-1}) - \mathcal{G}(U_{n-1}^{k-1})}_{\text{Correct}}$$

Iteration number

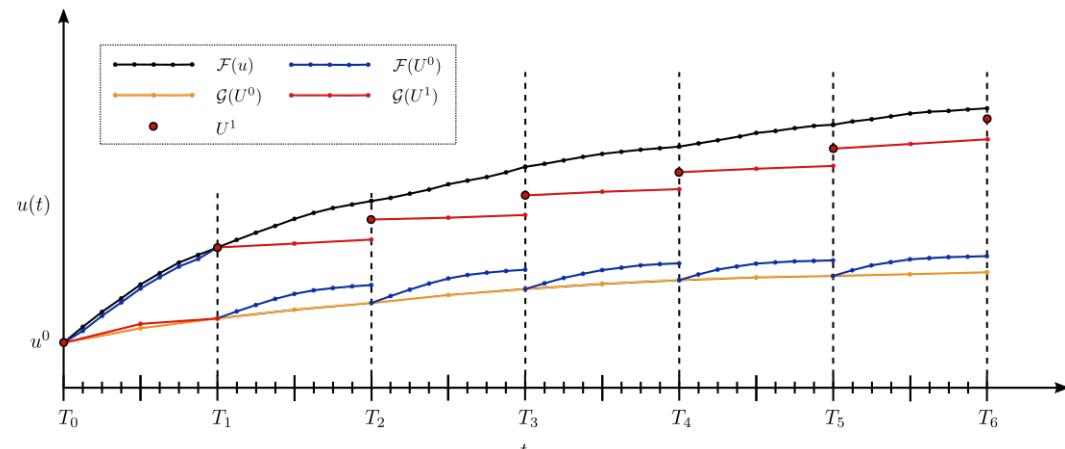
Time step

- 4) Solution given by red dots. Repeat steps 2 and 3 until desired tolerance

$$\|U_i^k - U_i^{k-1}\|_\infty < \varepsilon \quad \forall i \in \{1, \dots, N\}.$$

Converges **deterministically** in $k_d \in \{1, \dots, N\}$ iterations.

Parallel speed-up $\approx N/k_d$

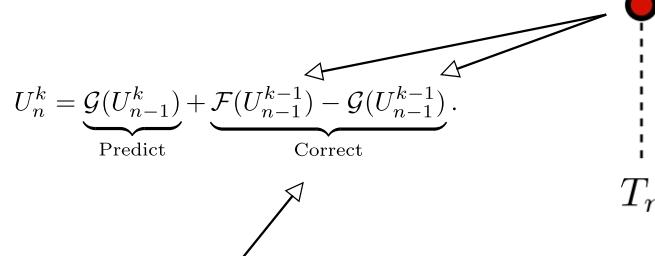


(III) Stochastic parareal

Parareal is already fairly robust...how do we improve its convergence rate?

Classic parareal

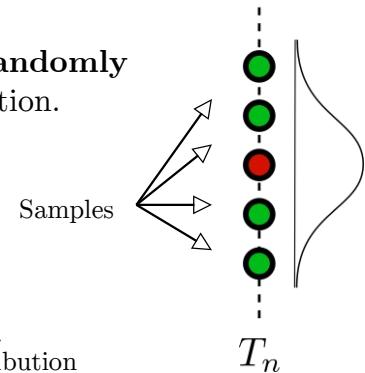
A single **deterministic** initial value is used iteratively in the PC:



Want to improve this correction.

Stochastic parareal

Instead, sample **M** initial values **randomly** from some probability distribution.



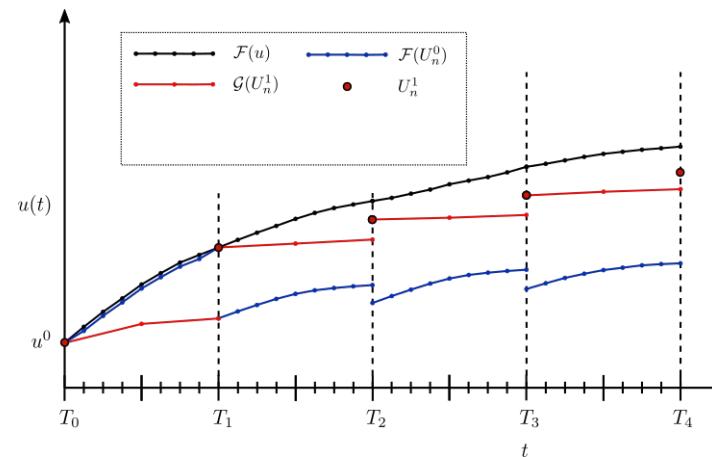
Choose 'optimal sample' from these.

Aim: Improve correction using **optimal sample** \rightarrow **converge in fewer iterations.**

(III) Stochastic parareal

How it works

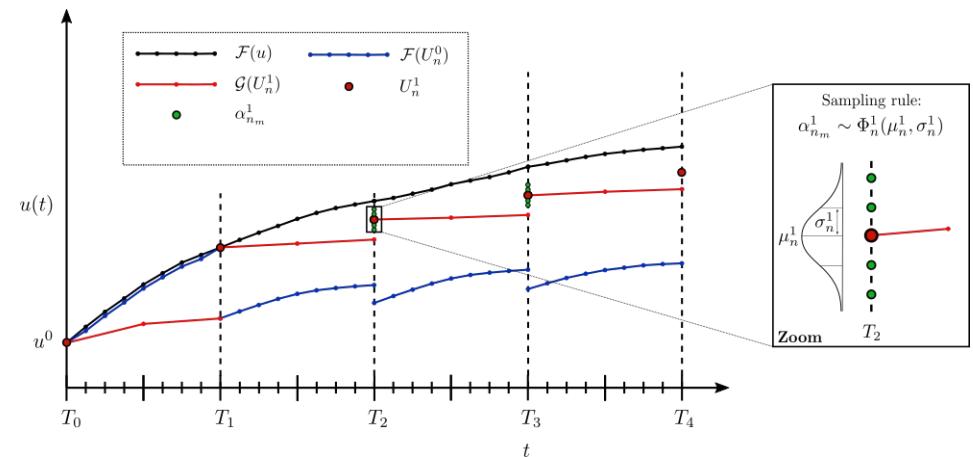
- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).



(III) Stochastic parareal

How it works

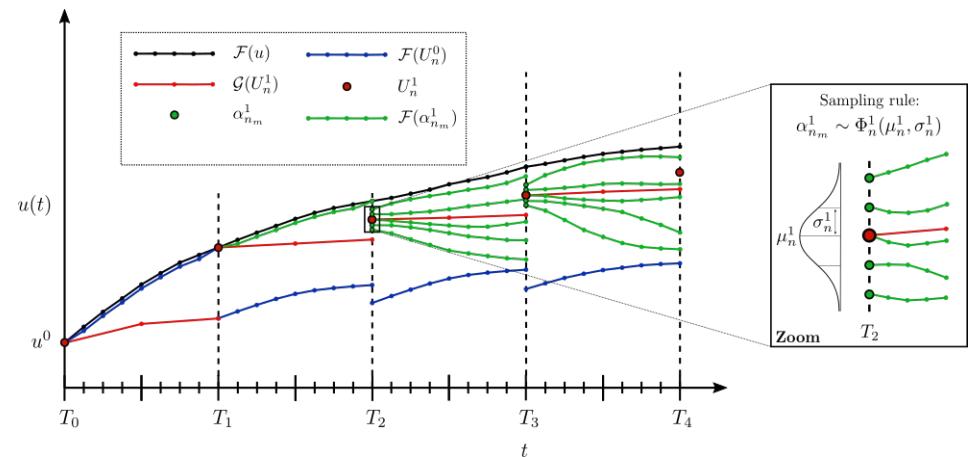
- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$



(III) Stochastic parareal

How it works

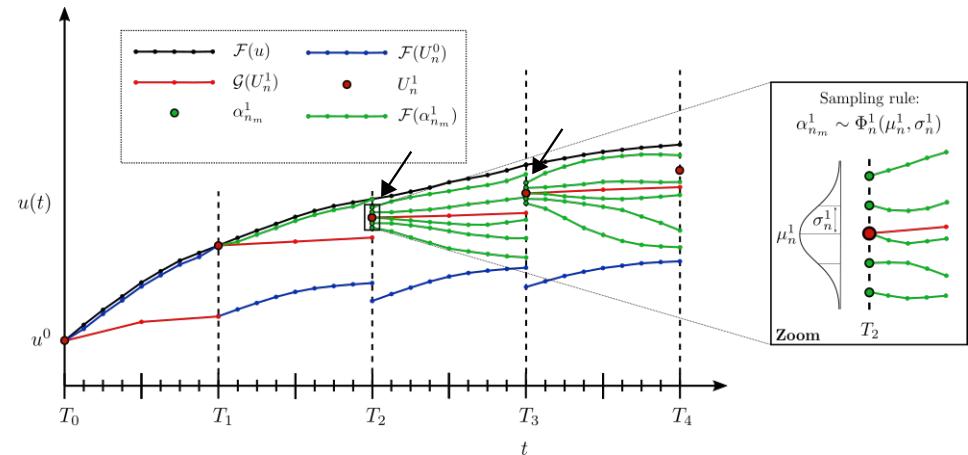
- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).



(III) Stochastic parareal

How it works

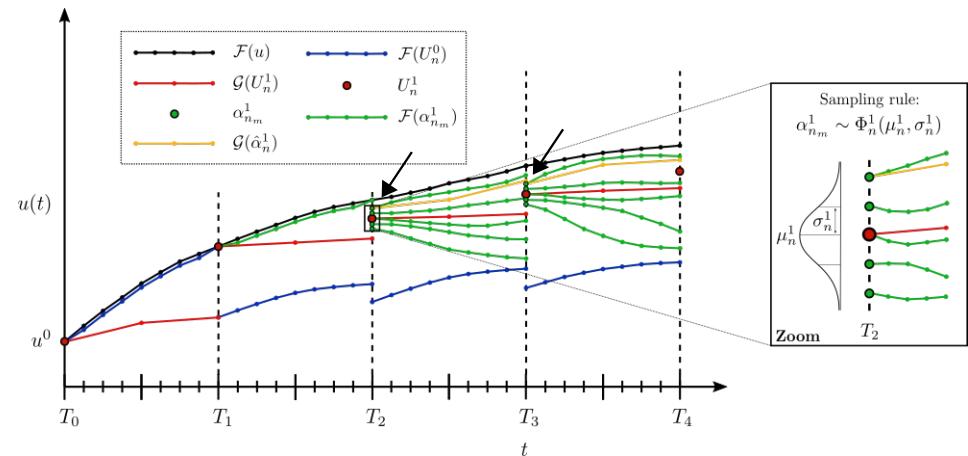
- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).
- 4) Select ‘optimal sample’ $\hat{\alpha}_n^1$ at each sub-interval by identifying the smoothest F trajectory over the entire time interval.



(III) Stochastic parareal

How it works

- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).
- 4) Select ‘optimal sample’ $\hat{\alpha}_n^1$ at each sub-interval by identifying the smoothest F trajectory over the entire time interval.
- 5) Run G on optimal samples (yellow lines).

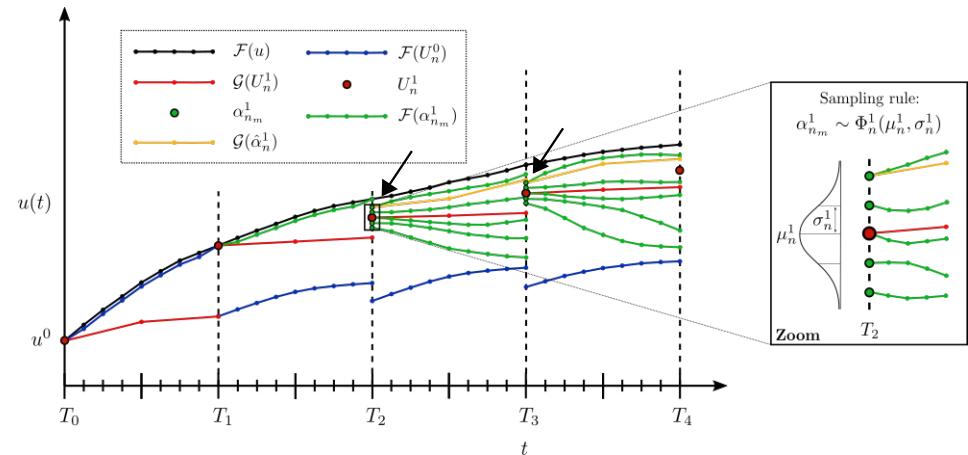


(III) Stochastic parareal

How it works

- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).
- 4) Select ‘optimal sample’ $\hat{\alpha}_n^1$ at each sub-interval by identifying the smoothest F trajectory over the entire time interval.
- 5) Run G on optimal samples (yellow lines).
- 6) Use new F and G values in PC:

$$U_n^2 = \underbrace{\mathcal{G}(U_{n-1}^2)}_{\text{predict}} + \underbrace{\mathcal{F}(\hat{\alpha}_{n-1}^1) - \mathcal{G}(\hat{\alpha}_{n-1}^1)}_{\text{new correction}}.$$



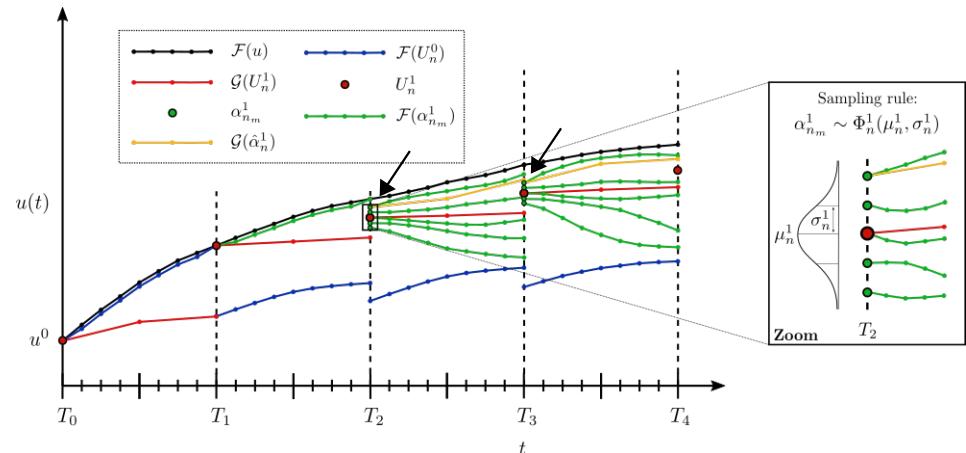
(III) Stochastic parareal

How it works

- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).
- 4) Select ‘optimal sample’ $\hat{\alpha}_n^1$ at each sub-interval by identifying the smoothest F trajectory over the entire time interval.
- 5) Run G on optimal samples (yellow lines).
- 6) Use new F and G values in PC:

$$U_n^2 = \underbrace{\mathcal{G}(U_{n-1}^2)}_{\text{predict}} + \underbrace{\mathcal{F}(\hat{\alpha}_{n-1}^1) - \mathcal{G}(\hat{\alpha}_{n-1}^1)}_{\text{new correction}}.$$

- 7) Carry out error checks – then do further iterations from step 2 if necessary.



(III) Stochastic parareal

How it works

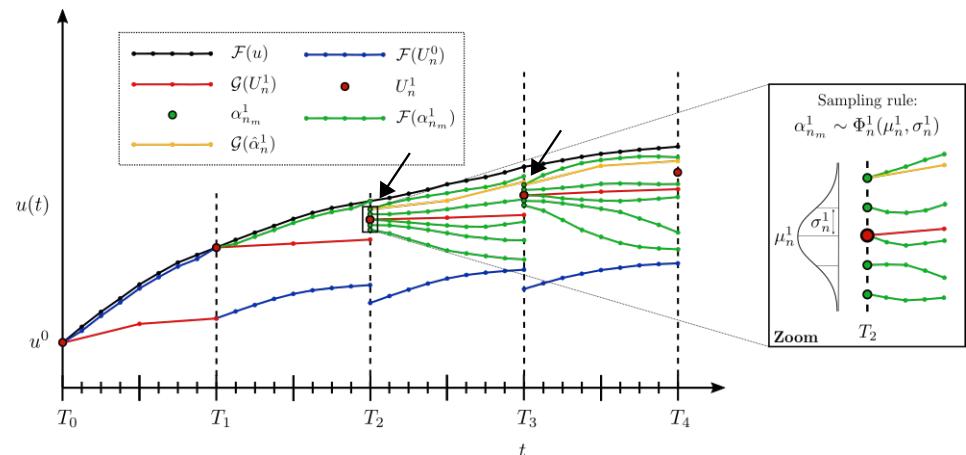
- 1) First iteration ($k = 1$) identical to parareal. Start with the PC values (red dots).
- 2) Sample M initial values at un converged sub-intervals: $\alpha_{n_m}^1 \sim \Phi(\mu_n^1, \sigma_n^1)$
- 3) Run F in parallel on each sample (green lines).
- 4) Select ‘optimal sample’ $\hat{\alpha}_n^1$ at each sub-interval by identifying the smoothest F trajectory over the entire time interval.
- 5) Run G on optimal samples (yellow lines).
- 6) Use new F and G values in PC:

$$U_n^2 = \underbrace{\mathcal{G}(U_{n-1}^2)}_{\text{predict}} + \underbrace{\mathcal{F}(\hat{\alpha}_{n-1}^1) - \mathcal{G}(\hat{\alpha}_{n-1}^1)}_{\text{new correction}}.$$

- 7) Carry out error checks – then do further iterations from step 2 if necessary.

Note: $M = 1 \rightarrow$ stochastic parareal = parareal.

Converges **stochastically** in $k_s \in \{1, \dots, N\}$ iterations.



(III) Stochastic parareal

Properties

- Numerical solutions **and** convergence rate **vary stochastically** → i.e. probabilistic solutions.
- F is run more frequently → requires **M times more processors** than parareal.

Sampling rules

- Known F and G solutions used to **construct probability distributions**.
- Vary with iteration **and** time step.
- **Four rules** tested.
- **Two different means** → either F values or the PC values.
- **Standard deviation** fixed → difference between G values.
- **Correlations** → taken between components of system.

Four sampling rules

Normal distributions

t-copula distributions

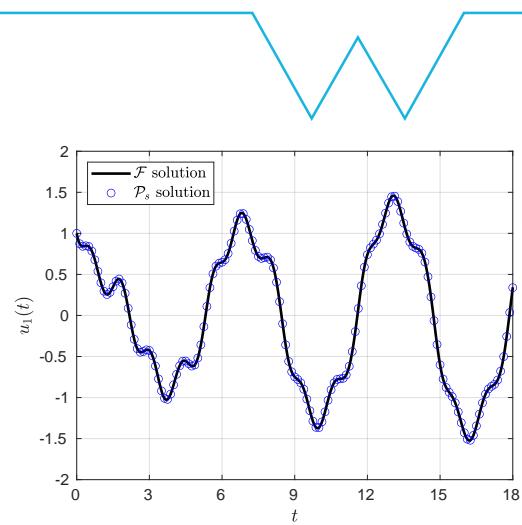
(IV) Numerical results

One-dimensional nonlinear ODE

$$\frac{du_1}{dt} = \sin(u_1) \cos(u_1) - 2u_1 + e^{-t/100} \sin(5t) + \ln(1+t) \cos(t)$$

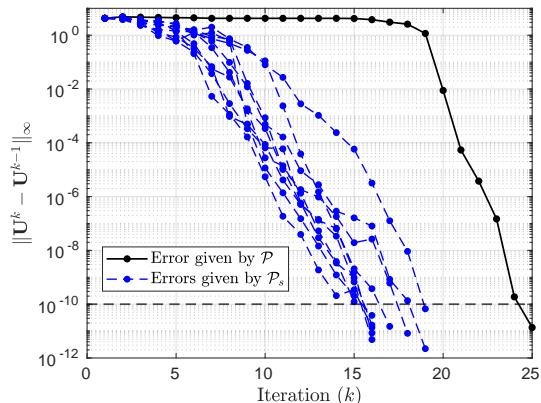
Initial value
 $u_1(0) = 1$

Time interval
 $t \in [0, 100]$



Numerical solutions in interval $[0, 18]$.

- F and G selected as explicit RK4 methods \rightarrow G with much larger time steps.
- Parareal takes $k_d = 25$ iterations (out of 40).
- Taking $M = 2$ (sampling rule 1) \rightarrow convergence is stochastic and much sooner than parareal!

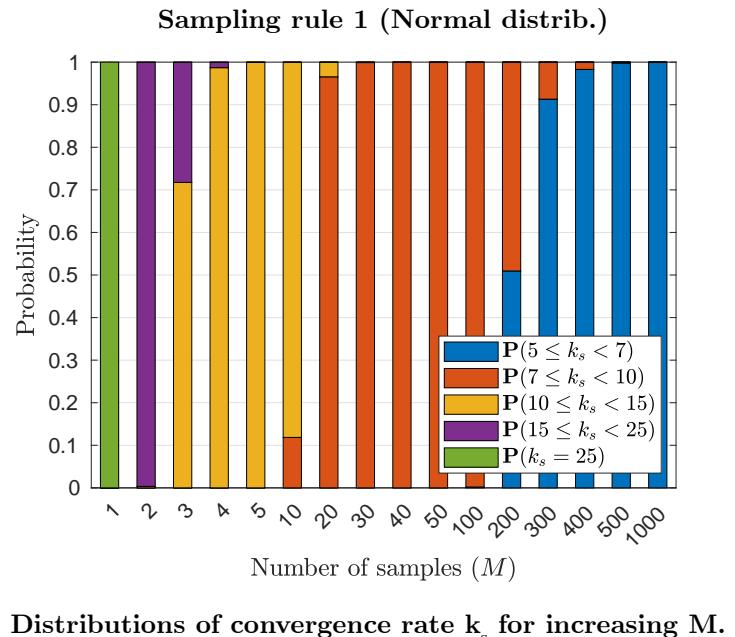


Successive errors generated by both algorithms at each iteration k.

(IV) Numerical results

One-dimensional nonlinear ODE

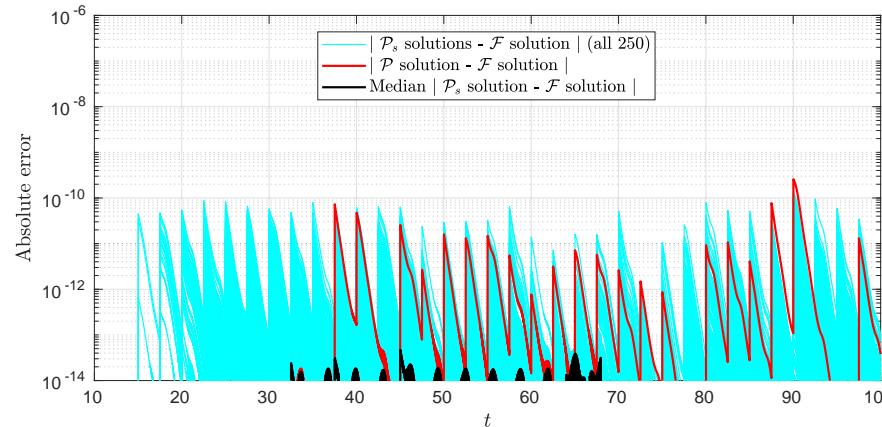
- Estimate **distributions** for $k_s \rightarrow$ ran algorithm 2000 times for each M.
- If $M > 1 \rightarrow$ we better the parareal result with **certainty**.
- As M increases $\rightarrow k_s$ decreases rapidly!
- Best scenario $k_s = 5 \rightarrow$ 20 iterations sooner than parareal!
- Demonstrates power of using stochastic sampling to reduce convergence rate.
- Other rules perform very similarly.



(IV) Numerical results

One-dimensional nonlinear ODE

- Median error of stochastic solution is **smaller** than deterministic error.
- Standard deviation of stochastic solutions is $\mathcal{O}(10^{-11})$.



Absolute errors of:

- 250 independent stochastic solutions vs. the F solver (light blue).
- median stochastic solution vs. F solution (black).
- parareal solution vs. F solution (red).

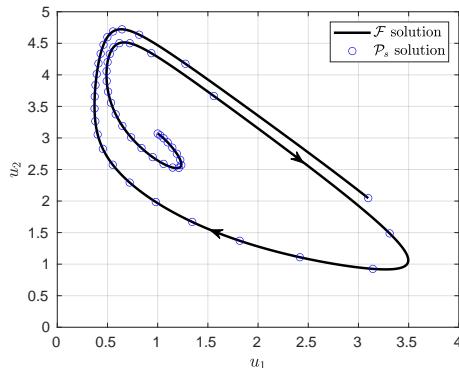
(IV) Numerical results

Two-dimensional Brusselator system

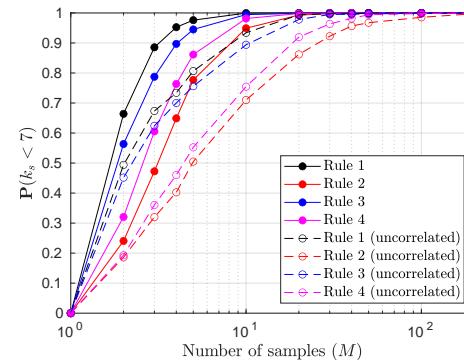
- Next, we test performance using **bivariate** probability distributions on **stiff** system.
- Parareal takes $k_d = 7$ iterations (out of 25).
- Sampling close to F values (**rules 1 and 3**) perform best.
- Generating **correlated** samples improves performance.
- Stiffness does however demand more samples to reduce k_s further and further.

$$\begin{aligned}\frac{du_1}{dt} &= 1 + u_1^2 u_2 - 4u_1 \\ \frac{du_2}{dt} &= 3u_1 - u_1^2 u_2\end{aligned}$$

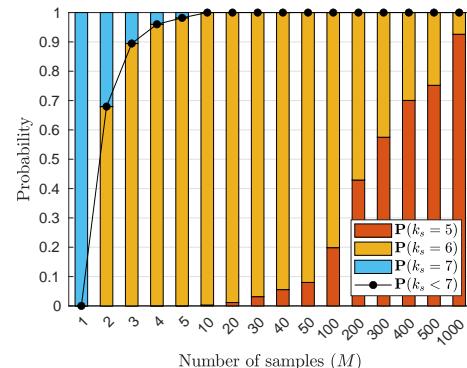
Initial values $u(0) = (1, 3.07)^T$	Time interval $t \in [0, 15.3]$
--	------------------------------------



Numerical solutions in phase space over time.



Estimated probabilities of converging in fewer iterations than deterministic parareal.

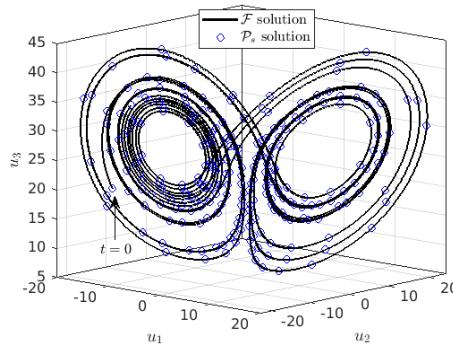


Estimated discrete distributions of k_s for sampling rule 1.

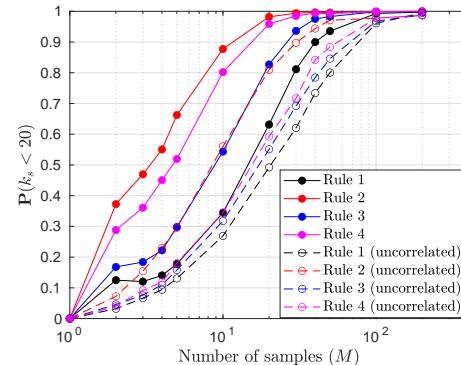
(IV) Numerical results

Three-dimensional Lorenz system

- Chaotic system \rightarrow exponentially diverging trajectories.
- Parareal takes $k_d = 20$ iterations (out of 50).
- Sampling close to PC values (**rules 2 and 4**) perform best in this case.
- Generating correlated samples, again, improves performance.
- Best convergence of $k_s = 16$ in small fraction of runs with $M = 1000$.



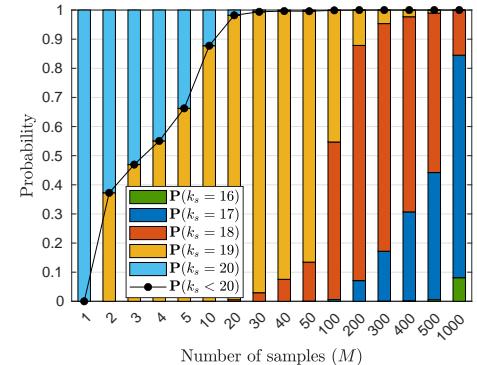
Numerical solutions in phase space over time.



Estimated probabilities of converging in fewer iterations than deterministic parareal.

$$\begin{aligned}\frac{du_1}{dt} &= 10(u_2 - u_1) \\ \frac{du_2}{dt} &= 28u_1 - u_1u_3u_2 \\ \frac{du_3}{dt} &= u_1u_2 - \frac{8}{3}u_3\end{aligned}$$

Initial values	$\mathbf{u}(0) = (-15, -15, 20)^T$
Time interval	$t \in [0, 18]$



Estimated discrete distributions of k_s for sampling rule 2.

(V) Conclusions and future work

Conclusions

- Developed a **stochastic parareal algorithm** → can better the convergence rate of parareal.
- Sampling from probability distributions → **increases probability** of locating true solution.
- Results illustrate that:
 - Given sufficient samples (M) → probability of beating parareal **approaches one**.
 - **Expected value** of k_s decreases for increasing M.
 - **Accuracy** of stochastic solutions is maintained, often better, than parareal.
 - Choice of **marginal means** has more impact than **type of distribution** – however no clear “optimal” sampling rule.
 - Generating **correlated samples** improves performance.

(V) Conclusions and future work

Future work

- Does algorithm scale for much larger systems? → long term goal to apply these methods to plasma simulations.
- Number of processors required scales with $M \rightarrow$ problematic if large amount of sampling required.
- Develop sampling rules/alternative methods that adapt to the problem being solved.

Thank you for listening! Questions?