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(I) Motivation and aims

● Want to numerically integrate large-scale initial value problems (IVPs).
 Systems of ordinary/partial differential equations.
 High wallclock runtimes, even using existing parallel methods.

 To extract further parallel speed-up, we must consider parallelising in time.
 Counter-intuitive (i.e. future solutions states depend upon previous states).
 Number of existing methods (multiple shooting type, multigrid etc). 
 All of which are deterministic (i.e. provide fixed speed-up).
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 Parareal[1] is a one such time-parallel algorithm.
 Works on range of IVPs (i.e. molecular, fluid dynamics).
 Uses two integrators + predictor-corrector to converge iteratively. 
 Locates solution in fixed number of iterations, yielding fixed parallel speed-up.
 Provides speed-up of approx. x10 vs. serial solvers – including plasma dynamics[2].

 Many variants of parareal exist to reduce wallclock time:
 Using adaptive time-stepping.
 Processor scheduling.

 None, however, reduce the number of iterations taken by parareal (fewer iterations = larger speed-up).

(I) Motivation and aims
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[1] - J. L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel, C. R. Math. Acad. Sci. Paris - Series I: Math., 332 (2001), pp. 661–668.
[2] - D. Samaddar, D. E. Newman, and R. Sánchez, Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm ,
      J. Comput. Phys., 229 (2010), pp. 6558–6573.



 Aim to extend parareal  →  stochastic parareal algorithm. 
 Sample multiple potential solutions from probability distributions.
 “Most accurate” fed into parareal’s predictor-corrector.
 Converges in fewer iterations than the original algorithm, with given probability. 

 Illustrate power of method by running numerical simulations on IVPs:
 estimating discrete distributions of the convergence rate for stochastic parareal. 
 testing different sampling rules (i.e. different probability distributions).
 validating the accuracy of stochastic solutions vs. the deterministic solution.  

Focus is on convergence rates, not wallclock runtimes.

Take home message
Parareal converges deterministically (parallel speed-up is fixed)  →  stochastic sampling used to reduce the 

number of iterations.

(I) Motivation and aims
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(II) Overview of parareal

The idea
● Solve an IVP in parallel:

● Parareal discretises into N sub-problems  →  each assigned a processor.

● Integration carried out by:
 High accuracy, slow integrator F  →  runs in parallel.
 Lower accuracy, fast integrator G →  runs serially.

● N initial values required to run F in parallel  →  parareal combines solvers to locate solution.

Sub-interval Coarse step Fine step

Initial value
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(II) Overview of parareal

How it works

Aiming for F solution (black line).
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4) Solution given by red dots. Repeat steps 2 and 3 

until desired tolerance

Iteration number

Time step

Solution

Converges deterministically in                     iterations.
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Parareal is already fairly robust...how do we improve its convergence rate?

(III) Stochastic parareal

A single deterministic initial value is used 
iteratively in the PC:

Classic parareal

Instead, sample M initial values randomly 
from some probability distribution. 

Stochastic parareal

Want to improve this correction.

Distribution
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Aim: Improve correction using optimal sample  →  converge in fewer iterations.

Samples

Choose ‘optimal sample’ from these. 



(III) Stochastic parareal

How it works

1) First iteration (k = 1) identical to parareal. Start with the PC values (red dots).
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Converges stochastically in                     iterations.  

Note: M = 1  →  stochastic parareal = 
parareal. 



(III) Stochastic parareal

Properties
● Numerical solutions and convergence rate vary stochastically  →  i.e. probabilistic solutions.
● F is run more frequently  →  requires M times more processors than parareal.

Sampling rules
● Known F and G solutions used to construct probability distributions. 
● Vary with iteration and time step.
● Four rules tested.
● Two different means  →  either F values or the PC values. 
● Standard deviation fixed  →  difference between G values.
● Correlations  →  taken between components of system.
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Four sampling rules

Normal distributions t-copula distributions



Initial value Time interval

(IV) Numerical results

One-dimensional nonlinear ODE

 F and G selected as explicit RK4 methods  →  G with much larger time steps.

 Parareal takes           iterations (out of 40).

 Taking M = 2 (sampling rule 1)  →  convergence is stochastic and much 

sooner than parareal!

Numerical solutions in interval [0,18].
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(IV) Numerical results

One-dimensional nonlinear ODE

● Estimate distributions for      →  ran algorithm 2000 times 

for each M.

 If M > 1  →  we better the parareal result with certainty. 

 As M increases  →      decreases rapidly!

 Best scenario           → 20 iterations sooner than parareal!

 Demonstrates power of using stochastic sampling to reduce 

convergence rate.

 Other rules perform very similarly. 

Distributions of convergence rate ks for increasing M.

Sampling rule 1 (Normal distrib.)
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(IV) Numerical results

One-dimensional nonlinear ODE
● Median error of stochastic solution is smaller than deterministic error.
● Standard deviation of stochastic solutions is               . 

Absolute errors of:  - 250 independent stochastic solutions vs. the F solver (light blue).
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Initial values Time interval

(IV) Numerical results

Two-dimensional Brusselator system 
 Next, we test performance using bivariate probability distributions on stiff system. 
 Parareal takes           iterations (out of 25).
 Sampling close to F values (rules 1 and 3) perform best.
 Generating correlated samples improves performance. 
 Stiffness does however demand more samples to reduce     further and further.

Numerical solutions in phase 
space over time.
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Initial values Time interval

(IV) Numerical results

Three-dimensional Lorenz system 
 Chaotic system  →  exponentially diverging trajectories. 
 Parareal takes            iterations (out of 50).
 Sampling close to PC values (rules 2 and 4) perform best in this case.
 Generating correlated samples, again, improves performance. 
 Best convergence of             in small fraction of runs with M = 1000. 

14/17

Numerical solutions in phase 
space over time.

Estimated probabilities of converging in 
fewer iterations than deterministic parareal.

Estimated discrete distributions of  
   for sampling rule 2.
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(V) Conclusions and future work

Conclusions
 Developed a stochastic parareal algorithm  → can better the convergence rate of parareal.

 Sampling from probability distributions  →  increases probability of locating true solution. 

 Results illustrate that:
 Given sufficient samples (M)  →  probability of beating parareal approaches one.

 Expected value of      decreases for increasing M.

 Accuracy of stochastic solutions is maintained, often better, than parareal.

 Choice of marginal means has more impact than type of distribution – however no clear “optimal” sampling rule.

 Generating correlated samples improves performance.
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(V) Conclusions and future work

Future work

 Does algorithm scale for much larger systems?  →  long term goal to apply these methods to plasma simulations.

 Number of processors required scales with M →  problematic if large amount of sampling required.

 Develop sampling rules/alternative methods that adapt to the problem being solved.

16/17



Thank you for listening! Questions?
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