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Project Aims

• To reproduce the results detailed by Li, Patterson, Zhang and Kerswell in their paper: “Spin-up and spin-down in a half 
cone: A pathological situation or not?” [1] using simpler techniques.

• To also look for anything markedly different between both sets of findings and discuss. 

What did they do?

• Identify how initial vorticity generated by spin-up/down in a half cone propagates and over what time scale it decays.

• Argued that no discrete set of oscillatory modes exist in a half cone because the vertex “precludes their existence”.

• Used a combination of 3D FEM simulations (Shanghai supercomputer) and experimental methods. 

How will we reproduce the results?

• Briefly derive the Topographic wave equation (TWE) and solve using spectral numerical methods.

• Run eigenvalue analysis and plot streamline, vorticity and energy results.

Why is this set up important?

• Non-axisymmetric structure of the geometries means the classical linear theory

developed by Howard and Greenspan [2] cannot be applied.

• This motivates the search for alternative methods to solve the spin-up/down problem.

Overview

Fig 1. Experimental setup in [1].



• A spin-down problem is concerned with understanding the transient dynamics of a fluid following a fixed decrease in 
its rotation rate from 𝜴𝟎to 𝜴𝟏 = (1 − 𝜀)𝜴𝟎 for some small 0 < 𝜖 ≪ 1.

• The Rossby number is a measure of the scale of the change:    𝑅𝑜 = #!$#"
#!

.

• It is important as the process arises in astrophysical, geophysical and industrial systems.

What is spin-down?
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Fig 3. The 2D and 3D diagrams of the half cone.Fig 2. The Rossby number scale for spin-up and spin-down.



Inviscid Half Cone - Problem Derivation
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• Very similar to the finite element method except the solution is expressed as sum of non-zero basis functions 
over entire domain (instead of just the finite elements) [3].

• Allows us to discretise the domain and differentiate using Chebyshev differentiation matrices 𝐷* and 𝐷+.

Inviscid Half Cone - Spectral Method
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• Spurious eigenvalues arise as result of the discretisation and unexplained physics so we use methods from [5] and [6] 
to filter them out. 

• Eigenvalues are computed at two different resolutions (𝑀%, 𝑁%) and (𝑀&, 𝑁&) and if they are very close in both 
solutions then they are deemed ‘good’, if not they are spurious.

• In [1], Li et al. claim that modes cannot exist because the vertex “precludes” their existence, this demonstrates this is 
not the case.

• Also introduce the initial vorticity condition:

Inviscid Half Cone – Modal Solution
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Fig 5. r𝑁 ≈ 88 ‘good’ modes exist (left). Zero ‘good’ modes (right).
 

Fig 6. Streamlines generated by spin-down.
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Inviscid Half Cone – Modal Solution

Fig 7. Horizontal velocity field, 𝒖 𝒓, 𝑡 , from the experiments 
in [1] for 𝑅𝑜 = −0.05 at 𝑡 = 10 (i.e. linear spin-down). Fig 8. Superposed modal solution, 𝑡 ∈ 0,480 .

𝜓 = �
6:%

;7

𝑎6𝜙6 𝑟, 𝜃 𝑒-.%/ 𝜁 𝑟, 𝜃, 0 = 𝛻 ⋅ 9(
'"

=	n+1	 for	spin−down−1	 for	spin−up  at  𝑡 = 0

• Orthogonality analysis by Johnson [4] proves eigenvalues of inviscid TWE are subinertial ( 𝜔 ≤ 𝑓) and real.

• Hence we can superpose 30 ‘good’ modes (≈ 75% of total variance) resulting in the streamline patterns below.

• The solution is not as accurate as we would like and does not fully capture the transient behavior of spin-down.



Inviscid Half Cone – Time-dependent Solutions
• Instead of a harmonic solution we fully integrate over time, using 
𝜓 = 𝜓 𝑟, 𝜃, 𝑡 	and	the same spectral techniques as before plus an 
ODE solver in MATLAB. 

• Much smoother streamlines, propagate westward where alternating 
cyclonic and anticyclonic cells build up with no way to dissipate 
(reflected in s = 1 case).

• Propagation occurs much faster in s = 1 than s = ½.

• Exactly the type of motion found in [1] except viscosity needs to be 
included. 
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Fig 9. 
Time-dependent 
integrated 
solution in V =
0, 𝜋 ×[0,1],  
𝑡 ∈ 0,700 .

S = ½ (left)
S = 1 (right)



• Introduce a linear vorticity damping term scaled by 
the topography of the container ⟹ decay 
stronger in shallow areas (𝜈 = 0.01 for all 
following problems).  

• As expected, no eigenvalues exist in the full slope 
case (s = 1), however they now have positive 
imaginary components in both cases ⟹ solutions 
decay because:
𝜓 = 𝜙 𝑥, 𝑦 𝑒- <%8-=% / = 𝜙 𝑥, 𝑦 𝑒-<%/𝑒$=%/.

• Even though spurious, eigenvalues in s = 1 case 
have much larger magnitude than the s = ½ ⟹
faster decay.

• Most likely because Ekman pumping on sloping 
bottom has more of an impact than the lateral 
walls.

Viscous Half Cone
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Fig 14. r𝑁 ≈ 100 ‘good’ modes exist (left). Zero ‘good’ modes (right).
 

Mode (n) 𝝎𝒏 (𝒔 = 𝟏/𝟐) 𝝎𝒏 (𝒔 = 𝟏)
1 −0.08 + 0.01𝑖 0.10 + 19.84𝑖
2 0.08 + 0.01𝑖 −0.10 + 19.84𝑖



Viscous Half Cone - Time-dependent Solutions
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• As usual the waves propagate toward the south-western wall (much faster in the half cone) and the cells build up.

• The waves quickly dissipate as the Ekman layers rapidly spin-down the fluid, hence the waves no longer reflect 
back east. 

Fig 15. 
Time-dependent 
integrated solution 
V = 0, 𝜋 ×[0,1], 
𝑡 ∈ 0,700 .

S = ½ (left)
S = 1 (right)



• From the streamfunction 𝜓, it is straightforward to calculate the 
vertical vorticity 𝜁 at each time step 𝑡:

• As expected, spin-down generates zero (almost negative) vorticity 
close to boundary and positive vorticity within interior at 𝑡 = 0. 

• For 𝑡 > 0,	initial vorticity propagates toward the south-western 
corner, surrounded by negative vorticity as it does.

• At the same time, excess vorticity is damped via Ekman pumping, 
returning the system to rigid body rotation. 

Viscous Half Cone – Vertical Vorticity
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Fig 16. Contours of positive, negative and zero vorticity plotted in red, 
blue and black respectively. (a) Isolines from [1] at 𝑧 = −0.6, for 𝑅𝑜 =
− 0.1, values from [-21,9]. (b) Contours from the TWE, values from [-
25,25]. (a) Results from [1]. (b) TWE results.



Viscous Half Cone – Energy Decay
• In [1], Li et al. calculate the “speed of adjustment”, or the time at which spin-up/down is concluded as the time taken 
𝑡7, for the kinetic energy of the system to drop to 1/𝑁th of its initial value. More formally:

• They identify a linear relationship between 𝑡7 and the Ekman spin-up scale  𝐸$%/&, 

     more specifically,  𝑡%))) 	≈ 0.1520𝐸$%/& and 𝑡%)) 	≈ 0.2386𝐸$%/&.

• Replicating the analysis, linear relationships are found and, by averaging the ratios of the gradients, we find that spin-
down occurs approximately 4.13 times faster in the half cone than the half cylinder with slope.

∫@ | |𝒖 𝑡7 &	𝑑𝑉
∫@ | |𝒖 0 &	𝑑𝑉

=
1
𝑁 .

Fig 18. Energy decay times 𝑡7 against 𝐸$%/& from [1]. 
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Summary of Findings
Main Findings

• Accurately managed to reproduce the results of streamlines, vertical vorticity, vertical velocity and energy decay 
detailed in [1] using the two-dimensional topographic wave equation.

• Hence computational requirements were significantly reduced. 

• It is determined that no oscillatory modes exist when the depth of the container goes to zero (as the energy integral 
becomes unbounded), countering the claim in [1] that the half cone vertex “precludes” their existence. 

• Reflected waves only exist in the models where viscosity is absent (as short waves are too weak to be reflected).

• The linear spin-up analysis ( 𝑅𝑜 ≤ 0.1) can be replicated and is identical to linear spin-down except that the sign of 
the streamfunction and hence velocity vectors and vorticity have opposite sign – as demonstrated in [1].

Further Work

• Study the effects of fluid stratification, compressibility and free surfaces.

• Can study other geometries (in the shallow water limit) for linear spin-up/down.

• Could look at ‘spin-over’ problems. 
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• Similarly we can calculate the vertical velocity 𝑤(𝑟, 𝜃, 𝑧, 𝑡) at each time 
step 𝑡:

• In [1], it is shown that dynamics for linear spin-up/down (|𝑅𝑜| ≤ 0.1) are 
the same, hence we compare with spin-up computed in [1].

• Dynamics produced are identical, note however the colours must be 
reversed.

Viscous Half Cone – Vertical Velocity
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Fig 17. Contours of positive, negative and zero velocity plotted in red, 
blue and black respectively. (a) Isolines from [1] at 𝑧 = 0.6, for 𝑅𝑜 =
0.01, values from [-0.15,0.35]. (b) Contours from the TWE at z = −0.6 , 
values from [-1,1].


