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Overview

Project Aims

* To reproduce the results detailed by Li, Patterson, Zhang and Kerswell in their paper: “Spin-up and spin-down in a half
cone: A pathological situation or not?” [1] using simpler techniques.

* To also look for anything markedly different between both sets of findings and discuss.
What did they do?

* Identify how initial vorticity generated by spin-up/down in a half cone propagates and over what time scale it decays.
* Argued that no discrete set of oscillatory modes exist in a half cone because the vertex “precludes their existence”.

* Used a combination of 3D FEM simulations (Shanghai supercomputer) and experimental methods.

How will we reproduce the results?
 Briefly derive the Topographic wave equation (TWE) and solve using spectral numerical methods.
* Run eigenvalue analysis and plot streamline, vorticity and energy results.
Why is this set up important?

* Non-axisymmetric structure of the geometries means the classical linear theory

developed by Howard and Greenspan [2] cannot be applied.

* This motivates the search for alternative methods to solve the spin-up/down problem.

Fig 1. Experimental setup in [1].




What is spin-down?

* A spin-down problem is concerned with understanding the transient dynamics of a fluid following a fixed decrease in
its rotation rate from 2yto 24 = (1 — £)N( forsome small 0 < € K 1.

: Q-0
* The Rossby number is a measure of the scale of the change: Ro = %
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Fig 2. The Rossby number scale for spin-up and spin-down. Fig 3. The 2D and 3D diagrams of the half cone.

* Itisimportant as the process arises in astrophysical, geophysical and industrial systems.



Inviscid Half Cone - Problem Derivation
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Inviscid Half Cone - Spectral Method

* Very similar to the finite element method except the solution is expressed as sum of non-zero basis functions
over entire domain (instead of just the finite elements) [3].

* Allows us to discretise the domain and differentiate using Chebyshev differentiation matrices Dg and D,..

Discretise using M+1 and N+1
Chebyshev points in each direction:
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Fig 4. The Chebyshev mesh.
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Inviscid Half Cone — Modal Solution
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Spurious eigenvalues arise as result of the discretisation and unexplained physics so we use methods from [5] and [6]
to filter them out.

Eigenvalues are computed at two different resolutions (M, N;) and (M,, N,) and if they are very close in both
solutions then they are deemed ‘good’, if not they are spurious.

In [1], Li et al. claim that modes cannot exist because the vertex “precludes” their existence, this demonstrates this is
not the case.
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Fig 5. N ~ 88 ‘good’ modes exist (left). Zero ‘good’ modes (right). Fig 6. Streamlines generated by spin-down.




Inviscid Half Cone — Modal Solution

» Orthogonality analysis by Johnson [4] proves eigenvalues of inviscid TWE are subinertial (|w| < f) and real.

* Hence we can superpose 30 ‘good’ modes (= 75% of total variance) resulting in the streamline patterns below.

N
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* The solution is not as accurate as we would like and does not fully capture the transient behavior of spin-down.

Full Solution for s = 1/2
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Fig 7. Horizontal velocity field, u(r, t), from the experiments . _
in [1] for Ro = —0.05 att = 10 (i.e. linear spin-down). Fig 8. Superposed modal solution, t € [0,480].




Inviscid Half Cone — Time-dependent Solutions | ;,  Time-dependent Problem
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* Instead of a harmonic solution we fully integrate over time, using = —[rH,,1 in V
; 096
Y = Y(r,0,t) and the same spectral techniques as before plus an =0 on aV
ODE solver in MATLAB.
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* Much smoother streamlines, propagate westward where alternating V- (Ho) Yp=1att=0

cyclonic and anticyclonic cells build up with no way to dissipate

(reflected in s = 1 case). Matrix Problem
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included. Y =0 on JV

C=1att=0"

Time-dependent solution for s = 1

Fig 9.
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Viscous Half Cone

* Introduce a linear vorticity damping term scaled by

the topography of the container = decay
stronger in shallow areas (v = 0.01 for all

following problems).

* As expected, no eigenvalues exist in the full slope

case (s = 1), however they now have positive

imaginary components in both cases = solutions

decay because:
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* Even though spurious, eigenvalues in s = 1 case
have much larger magnitude thanthes=%% =

faster decay.

* Most likely because Ekman pumping on sloping
bottom has more of an impact than the lateral

walls.

(Viscous) Topographic Wave Equation
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Fig 14. N = 100 ‘good’ modes exist (left). Zero ‘good’ modes (right).




Viscous Half Cone - Time-dependent Solutions

3 Time-dependent Problem
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* As usual the waves propagate toward the south-western wall (much faster in the half cone) and the cells build up.

* The waves quickly dissipate as the Ekman layers rapidly spin-down the fluid, hence the waves no longer reflect
back east.

Time-dependent solution for s = 1

Fig 15.
Time-dependent
integrated solution
V = [0, ]x[0,1],
t € [0,700].
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Viscous Half Cone — Vertical Vorticity

* From the streamfunction 1, it is straightforward to calculate the
vertical vorticity { at each time step t:

((T,H,t)=‘7'<v—lp>= l(Hillir) + - Yoo

2
H, r \H, - T*Hy

-  {(r,0,t) =LyY(r,6,t)
* As expected, spin-down generates zero (almost negative) vorticity

close to boundary and positive vorticity within interior at t = 0.

* Fort > 0, initial vorticity propagates toward the south-western
corner, surrounded by negative vorticity as it does.

* At the same time, excess vorticity is damped via Ekman pumping,
returning the system to rigid body rotation.

Fig 16. Contours of positive, negative and zero vorticity plotted in red,
blue and black respectively. (a) Isolines from [1] at z = —0.6, for Ro =
— 0.1, values from [-21,9]. (b) Contours from the TWE, values from [-
25,25].

Both in full half
cone (s=1)

(a) Results from [1].

(b) TWE results.




Viscous Half Cone — Energy Decay

* In[1], Li et al. calculate the “speed of adjustment”, or the time at which spin-up/down is concluded as the time taken
ty, for the kinetic energy of the system to drop to 1/Nth of its initial value. More formally:

J, lu@)1? v 1

* They identify a linear relationship between ty and the Ekman spin-up scale E~1/2, —

more specifically, t;p00 = 0.1520E~Y2 and t;yo = 0.2386E~1/2.

J,lu©@]2dv N’

* Replicating the analysis, linear relationships are found and, by averaging the ratios of the gradients, we find that spin-
down occurs approximately 4.13 times faster in the half cone than the half cylinder with slope.

T T T T T T

3B - .
X E=5%10
AE=1x107"*
& E=5x107*
r ¥E=1X1O_3
25F +E=5x107°

T

30

20 F

15F

L L " L Il L " " L L " " " L
0 50 c-1/2 100 150

Fig 18.

Energy decay times ty against E /2 from [1].
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Fig 19. Energy decay times ty against E~1/2 in the
half cylinder w/slope (s=1/2) and half cone (s=1).




Summary of Findings

Main Findings

* Accurately managed to reproduce the results of streamlines, vertical vorticity, vertical velocity and energy decay
detailed in [1] using the two-dimensional topographic wave equation.

* Hence computational requirements were significantly reduced.

* Itis determined that no oscillatory modes exist when the depth of the container goes to zero (as the energy integral
becomes unbounded), countering the claim in [1] that the half cone vertex “precludes” their existence.

» Reflected waves only exist in the models where viscosity is absent (as short waves are too weak to be reflected).

* The linear spin-up analysis (|Ro| < 0.1) can be replicated and is identical to linear spin-down except that the sign of
the streamfunction and hence velocity vectors and vorticity have opposite sigh —as demonstrated in [1].

Further Work
» Study the effects of fluid stratification, compressibility and free surfaces.
* Can study other geometries (in the shallow water limit) for linear spin-up/down.

* Could look at ‘spin-over’ problems.
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Viscous Half Cone — Vertical Velocity Soth i full halt

cone (s=1)

 Similarly we can calculate the vertical velocity w(r, 0, z, t) at each time
step t:
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* In[1], it is shown that dynamics for linear spin-up/down (|Ro| < 0.1) are
the same, hence we compare with spin-up computed in [1].

* Dynamics produced are identical, note however the colours must be
reversed.

Fig 17. Contours of positive, negative and zero velocity plotted in red,
blue and black respectively. (a) Isolines from [1] at z = 0.6, for Ro =
0.01, values from [-0.15,0.35]. (b) Contours from the TWE at z = —0.6,

values from [-1,1]. (a) Results from [1]. (b) TWE results.




