Towards probabilistic time-parallel algorithms

for solving initial value problems

MENS
AGI [MOLEy

DS S N

(YYYVYY
NNNNNS

Kamran Pentland

A thesis submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy

Mathematics for Real-World Systems CDT
University of Warwick

September 2023

Contents

List of acronyms

List of figures

List of tables

List of algorithms

Acknowledgements

Declarations

Abstract

Chapter 1 Introduction

1.1

1.2

1.3

Parallelism for differential equations
1.1.1 Why use parallel computing?
1.1.2 What are parallel-in-time methods?
1.1.3 Our focus: Parareal
Probabilistic numerics for differential equations
1.2.1 What are probabilistic numerical methods?
1.2.2 Our focus: sampling- and learning-based methods

Thesis aims and outline

Chapter 2 The Parareal algorithm

2.1

2.2

Overview e
Initial value problem setup
2.1.1 The objective
The algorithm oL
2.2.1 Derivation
2.2.2 Howitworks
2.2.3 Computational complexity
2.2.4 Error bound analysis

iv

ix

xi

xiii

xiv

© N O W o = e

[
[\

2.2.5 Choice of numerical solvers

2.2.6 Numerical experiment: Arenstorf Orbit
2.3 Variants and related work oL
2.4 Summary ... e

Chapter 3 SParareal I: a sampling-based time-parallel algorithm

OVerview o o
3.1 Motivation and backgroundo
3.1.1 OQurapproach, .
3.1.2 Related work,
3.2 Thealgorithm
3.21 Howitworks,
3.22 Samplingrules L oL
3.2.3 Computational complexity
3.2.4 Convergence e e e
3.3 Numerical experiments: nonlinear ODEs
3.3.1 Scalar nonlinear equation
3.3.2 The Brusselator system
3.3.3 The Lorenz63 system,
3.4 Discussion and further work 0 oL

Chapter 4 SParareal II: error bound analysis

Overview e
4.1 Re-defining SParareal
4.1.1 The alternative scheme
4.1.2 Samplingrules oL
4.2 Error bound analysis o
4.2.1 State-independent perturbations
4.2.2 State-dependent perturbations (sampling rules)
4.3 Numerical experiments L L oL
4.3.1 System of linear ODEs
4.3.2 Scalar nonlinear ODE

4.4 Discussion and further work

Chapter 5 GParareal I: a learning-based time-parallel algorithm

OVErview o i e e
5.1 Motivation and background00
5.1.1 Gaussian process emulation
5.1.2 Ourapproach oL
5.1.3 Related work oo
5.2 The algorithm

ii

38

5.3

5.4

9.5

521 Howitworks
5.2.2 Kernel hyperparameter optimisation
5.2.3 Computational complexity
5.2.4 Error bound analysis 0L
5.2.5 Generalisation to ODE systems
Numerical experiments: nonlinear ODEs
5.3.1 FitzHugh-Nagumo model
5.3.2 Rosslersystem
5.3.3 Nonautonomous system
5.3.4 Double pendulum system
Improving convergence: GParareal 4 fallback
5.4.1 The modification 0L
5.4.2 Numerical experiments,

Discussion and further work

Chapter 6 GParareal 1I: application to PDEs

Overview e
6.1 Some remarks on linear PDEso 00000
6.2 Numerical experiments: nonlinear PDEs
6.2.1 One-dimensional viscous Burgers’ equation
6.2.2 Two-dimensional FitzHugh-Nagumo model
6.3 Discussion and further worko
Chapter 7 Discussion and outlook
7.1 Contribution toward original aims
7.1.1 SParareal
7.1.2 GParareal
7.2 Outlook for probabilistic PinT algorithms
Appendices
A Ratesof convergence
B Proof of superlinear error bound for Parareal
C Additional SParareal experiments
C.1 Scalar Bernoulli equation
C.2 Square limit cycle system
D Technical results for SParareal error bounds
D.1 Standard results oL
D.2 Generating function method oL
E The Lorenz96 system
Bibliography

iii

121
121
122
123
123
127
131

134
134
134
136
139

141
141
142
142
142
145
147
147
147
150

151

List of acronyms

FHN FitzHugh-Nagumo

FLOPS Floating Point Operations Per Second
GP Gaussian Process

HPC High Performance Computer/Computing
ii.d. Independent Identically Distributed
IVP Initial Value Problem

LHS Latin Hypercube Sampling

MPSD Maximal Posterior Standard Deviation
NN Neural Network

ODE Ordinary Differential Equation

PC Predictor-Corrector

PDE Partial Differential Equation

PINN Physics-Informed Neural Network
PinT Parallel-in-Time

PN Probabilistic Numerics

RK Runge-Kutta

RKHS Reproducing Kernel Hilbert Space
SDE Stochastic Differential Equation

SE Square Exponential

v

List of figures

1.1
1.2
1.3
14

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

A hierarchy of computing terminology.
History of computer processor properties and HPC performance.
Illustration of the parallel-in-time problem.
Illustration of solutions from PN ODE solvers. 10
Schematic of the Parareal time domain decomposition. 23
Illustration of the first Parareal iteration. 25
Theoretically achievable speedup of Parareal vs. iteration number k. 27
Computational task scheduling in Parareal vs. full serial integration. 28
Numerical solution obtained solving the Arenstorf system with Parareal. 33
Numerical errors obtained solving the Arenstorf system with Parareal. 34
Nlustration of the first PinT algorithm proposed by Nievergelt (1964). 41
Illustration of the sampling-based ODE solver proposed by Conrad

et al. (2017). 42
Illustration of second iteration in SParareal. 46
Illustration of samples taken from two different bivariate Gaussian
distributions. L 48
Illustration of samples taken from two different bivariate t-copula
distributions. 49
Illustration of a possible processor configuration in SParareal. 51
Numerical solution (and errors) of (3.10) using Parareal and SParareal. 54
Speedup results obtained solving (3.10) using SParareal with varying
samples M. 55
Discrete distributions (and expected values) of SParareal iterations kg

vs. samples M when solving (3.10). 55
Numerical errors of Parareal and SParareal compared to serial Far
solution over time when solving (3.10). 56
Numerical solution (and errors) obtained when solving (3.11) using
Parareal and SParareal. 0. 57
Discrete distributions (and expected values) of SParareal iterations kg

vs. samples M when solving (3.11). 58

3.13

3.14

3.15

3.16

3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1
5.2
5.3
5.4

9.5

Discrete expected values of SParareal iterations ks vs. samples M
when solving (3.11).
Numerical errors of Parareal and SParareal compared to serial Far
solution over time when solving (3.11).
Discrete probabilities (and expected values) of SParareal iterations kg
vs. samples M when solving (3.12).
Discrete expected values of SParareal iterations ks vs. samples M
when solving (3.12). L
Numerical errors of Parareal and SParareal compared to serial Far

solution over time when solving (3.12).

Theoretical bounds vs. numerical errors for SParareal applied to the
linear system of ODEs (4.26) (with B < 1) using state-independent
Gaussian perturbations (4.27) of different size.
Theoretical bounds vs. numerical errors for SParareal applied to the
linear system of ODEs (4.26) (with B > 1) using state-independent
Gaussian perturbations (4.27) of different size.
Largest second moments (over n) of £8(U¥) for the sampling rules
and the Gaussian perturbations vs. iteration number k.
Theoretical bounds vs. numerical errors for SParareal applied to the
linear system of ODEs (4.26) (with B < 1) using the state-dependent
sampling rules.

Expected number of iterations k£ taken to reach stopping tolerance &

(2.10) for SParareal applied to the linear system (4.26) (with B < 1).

Theoretical bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using state-independent
Gaussian perturbations (4.27) of different size.
“Numerical” bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using the state-dependent
sampling rules.o
Expected number of iterations k£ taken to reach stopping tolerance ¢
(2.10) for SParareal applied to the nonlinear scalar ODE (4.28) (with
B>1). .

Illustration of how a Gaussian process emulator works.
Illustration of the first iteration of GParareal.
Iustration of the fill distance.
Numerical results obtained when solving the FHN model (5.21) with
GParareal.
Heat maps displaying the iteration counts k of Parareal and GParareal
when solving the FHN model (5.21) for different initial conditions.

vi

103

5.6 Numerical simulations solving the FHN model (5.21) using GParareal
with and without access to legacy data.
5.7 Heat map displaying the decrease in the number of iterations taken
until convergence of GParareal when solving (5.21) for different initial
values with legacy data compared to without.
5.8 Numerical results obtained solving the Rossler system (5.22) with
GParareal.
5.9 Numerical results obtained solving the nonautonomous system (5.23)
with GParareal.
5.10 Strong scaling results obtained when solving the nonautonomous
system (5.23) with GParareal.
5.11 A schematic of the double pendulum system.
5.12 Numerical results obtained solving the double pendulum system (5.24)
with GParareal.
5.13 Heat maps displaying the iteration counts k of Parareal and GParareal
when solving the double pendulum system (5.24) for different initial
conditions. L
5.14 Strong scaling results obtained when solving the double pendulum
system (5.24) with GParareal.
5.15 Maximal GP posterior standard deviations at each iteration k in
simulations of GParareal applied to the Lorenz96 system (E.1). . . .
5.16 Iterations k (and fraction of fallback corrections) made by GParareal
+ fallback vs. increasing switching tolerance w? when solving the
Lorenz96 system (E.1).
5.17 Maximal posterior standard deviations (and fraction of fallback cor-
rections) after k iterations in simulations of GParareal (and GParareal
+ fallback) when solving the Lorenz96 system (E.1).
5.18 Effect of using the additional stopping criterion (5.26) on final GParareal

solution accuracy. L.

6.1 Numerical results obtained solving the viscous Burgers’ equation (6.1)
with GParareal.o oo
6.2 Maximal posterior standard deviations after k iterations in simulations
of GParareal when solving Burgers’ equation (6.1).

6.3 Numerical solutions obtained solving the 2D FHN system (6.3) with

6.4 Speedup and GP runtime results from the GParareal experiments in
Table 6.2(c).

A.1 Illustration of linear and superlinear convergence of sequences.

vii

103

104

105

107

107
109

109

110

110

112

115

127

C.1

C.2

C.3

C4

C.5

C.6

E.1

Numerical solution (and errors) obtained when solving (C.1) using
SParareal.
Discrete distributions (and expected values) of SParareal iterations ks
vs. samples M when solving (C.1).
Discrete probabilities of SParareal iterations ks vs. samples M when
solving (C.1) with difference coarse solvers.
Numerical errors of Parareal and SParareal applied compared to serial
Far solution over time when solving (C.1).
Numerical solution (and errors) obtained when solving (C.2) using
Parareal and SParareal.
Discrete probabilities (and expected values) of SParareal iterations kg
vs. samples M when solving (C.2).
Numerical solutions to the Lorenz96 system (E.1) using the fine solver

Far with different levels of forcing.

viii

List of tables

21

4.1

5.1

5.2

5.3

6.1

6.2

Numerical and theoretical wallclock time, speedup, and efficiency

results obtained solving the Arenstorf system (2.14) using Parareal. .
Sampling rules used within SParareal.

Numerical and theoretical wallclock time, speedup, and efficiency re-
sults obtained solving the nonautonomous system (5.23) with Parareal
and GParareal. o
Numerical and theoretical wallclock time, speedup, and efficiency
results obtained solving the double pendulum system (5.24) with
Parareal and GParareal. 00000
Parameters used to solve the Lorenz96 system (E.1) for different levels

of forcing.

Numerical and theoretical wallclock time, speedup, and efficiency
results obtained solving Burgers’ equation (6.1) with Parareal and
GParareal.
Numerical and theoretical wallclock time, speedup, and efficiency
results obtained solving the 2D FHN system (6.3) with Parareal and

GParareal for increasing spatial resolution doooo

X

34

67

108

111

113

125

List of algorithms

1 Parareal s
2 SParareal
3 GParareal

Acknowledgements

Before we get into the thick of it, I must dedicate the next page or so to all those
who have directly (and indirectly) contributed to the writing of this thesis. While
these acknowledgements only account for approximately 1% of the total pages in this
thesis, the contribution of everyone mentioned below (and those I have inevitably

forgotten) is truly immeasurable.

First and foremost I must thank my parents for their endless help over the past
few years as I have pursued this PhD. Even though you may not fully understand
what this research is about (I will explain again don’t worry), your continual support
has meant everything to me and if not for you both, I would certainly not be where I
am today. Secondly, I want to thank Melissa for having to put up with me 24/7, not
just in the office, but at home and everywhere in between. I cannot overstate how
much your help and support in all manner of things has meant to me. I suppose I
should also shout out my brother Tarun on the other side of the world and thank

him for continually asking me if I'm “...finished with the PhD yet?”.

I want to also thank both of my supervisors at Warwick, Dr. Massimiliano
Tamborrino and Dr. Tim Sullivan, for their guidance and insight over the past few
years as we have attempted to traverse the trials and tribulations of parallel-in-time
methods. I am immensely grateful for your help with this research and for your
patience and encouragement when I (frequently) ran into dead ends. I would also
like to thank you for dealing with the copious amounts of administrative work that
comes with having a PhD student and for pushing me out of my comfort zone to
speak in various seminars and workshops over the years. Many thanks must also go
to my external collaborators at the Culham Centre for Fusion Energy: Dr. Lynton
Appel, Dr. James Buchanan, and Dr. Debasmita Samaddar. Your comments and
suggestions on how I can improve my work and our (sometimes lengthy!) discussions
about Parareal, SParareal, and GParareal have been invaluable. To all, I hope we

stay in touch and continue to work together in the future.

Outside of Warwick, I would like to express my sincere thanks to Dr. Jemma
Shipton, Dr. Sebastian Go6tschel, and Prof. Chris Oates for inviting me to speak at
their respective workshops and conferences around Europe. I really enjoyed meeting

everyone in both the parallel-in-time and probabilistic numerics communities and

xi

I have no doubt that this will lead to collaborative work in the future. My thanks
and appreciation must also go to my examiners Dr. Jere Koskela and (again) Dr.
Sebastian Gotschel for performing the unenviable task of reading this entire thesis
and for taking the time to provide me with insightful comments and corrections.

To my friends in office D1.13, thank you for the year-round entertainment and
procrastination sessions, of which there were almost certainly too many. I am
particularly proud of how overly elaborate our world cup, eurovision, and snooker
sweepstakes scoring systems became and I'm almost certain this is the reason why I
didn’t win any of them! To my friends outside Warwick, thank you for providing
me with well-needed escapes from time to time and reminding me that there’s more
to life than work. Lastly, thanks go to my friends in MathSys, the Mathematics
Institute, and Department of Statistics both past and present: long may the tradition
of 5-a-side football continue!

Finally, I would like to thank the staff in MathSys for providing a relaxed inclusive
working environment and for their tireless efforts in holding the CDT together during
some especially trying times. I am also grateful to the Engineering and Physical
Sciences Research Council, the Culham Centre for Fusion Energy, the EUROfusion
Consortium and Euratom for funding this research. I would also like to thank
the University of Warwick Scientific Computing Research Technology Platform for
providing access to their high performance computing facilities, without which none

of the numerical results in this thesis would exist.

xii

Declarations

I declare that the material contained in this thesis is my own work (except where
otherwise indicated, cited, or commonly known) and has not been submitted for a

degree at another university.
Chapters 1 and 2 contain snippets from each of the following works.

Chapter 3 is formed of work from:

- K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel. Stochastic
parareal: An application of probabilistic methods to time-parallelization. STAM
Journal on Scientific Computing, 45(3):582-5102, 2023a. doi:10.1137/21M1414231.

Chapter 4 is formed of work from:

- K. Pentland, M. Tamborrino, and T. J. Sullivan. Error bound analysis for the
stochastic parareal algorithm, 2022. arXiv:2211.05496. To appear in SIAM

Journal on Scientific Computing.
Chapter 5 is formed of work from (except Section 5.4, which is unpublished):

- K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Ap-
pel. GParareal: a time-parallel ODE solver using Gaussian process emulation.
Statistics and Computing, 33(1):23, 2023b. doi:10.1007/s11222-022-10195-y.

Chapter 6 is formed of unpublished work.

xiii

https://doi.org/10.1137/21M1414231
https://arxiv.org/abs/2211.05496
https://doi.org/10.1007/s11222-022-10195-y

Abstract

This thesis concerns the development of probabilistic time-parallel algorithms for
solving initial value problems (IVPs) that are computationally expensive to simulate
using traditional (serial) time-stepping methods. We begin by considering Parareal,
a well-studied deterministic time-parallel algorithm that combines solutions from
cheap (coarse) and expensive (fine) time-steppers within a predictor-corrector (PC)
scheme, to solve the IVP in parallel. Our goal is to derive, analyse, and test our own
probabilistic time-parallel algorithms that incorporate sampling- and learning-based
techniques from the field of probabilistic numerics into Parareal. These techniques
enable us to exploit valuable information contained within the fine and coarse solution
data generated during a Parareal simulation. We aim to accelerate the convergence
of Parareal (i.e. increase numerical speedup), generate probabilistic solutions to the
IVPs (to quantify numerical uncertainty explicitly), and verify the accuracy of these
solutions both numerically and analytically.

We first propose SParareal, a sampling-based algorithm that provides the PC with
candidate solution values drawn from probability distributions constructed using the
most recent fine and coarse solution data. Increased sampling in SParareal leads to
accelerated convergence vs. Parareal for low-dimensional IVPs, returning stochastic
solutions that are accurate (in the mean-square sense) with respect to the (exact)
serially obtained fine solver solution. Next, we propose GParareal, a learning-based
algorithm that models part of the PC using a Gaussian process emulator, trained on
all previously collected fine and coarse solution data. GParareal achieves accelerated
convergence for low to moderately sized IVPs, attains accurate solutions, and has
the ability to re-use legacy solution data from prior simulations—something that
existing time-parallel methods do not do. After introducing both algorithms, we
investigate their performance and analyse their limitations, assessing whether or not
they are viable methods for solving large-scale IVPs in parallel and discussing what

can be done to improve them in their current form.

Xiv

“For the scientist, at exactly the moment of discovery—that most
unstable existential moment—the external world, nature itself, deeply
confirms his [or her] innermost fantastic convictions. Anchored abruptly
in the world, Leviathan gasping on his hook, he is saved from extreme

mental disorder by the most profound affirmation of the real.”

Richard Rhodes, The Making of the Atomic Bomb

XV

Xvi

Chapter 1

Introduction

This thesis concerns the development of probabilistic time-parallel algorithms for
solving initial value problems (IVPs). The principle aim is to investigate whether we
can embed techniques from the field of probabilistic numerics (PN) into the framework
of existing parallel-in-time (PinT) algorithms. The key idea is to more effectively
utilise the IVP solution data obtained throughout a parallel-in-time simulation to
reduce simulation runtimes and (perhaps) better quantify solution uncertainty.

In this chapter, we give a general introduction to both PinT algorithms and PN
methods, providing an overview of how they work and have developed, and motivate
why research in these areas is important in the context of solving IVPs. We will
describe which PN methods we plan to incorporate into the framework of a popular
PinT algorithm, provide a detailed summary of our principal research aims, and

outline the rest of this thesis.

1.1 Parallelism for differential equations

1.1.1 Why use parallel computing?

In its most basic form, parallel computing is the process by which a computationally
expensive task is partitioned into a number of cheaper sub-tasks that can be solved
simultaneously without prior knowledge of one another (Trobec et al., 2018). By
computationally expensive, we mean that the task takes a long time to solve, e.g.
minutes, hours, or days. The goal is to reduce the total time taken to solve this
expensive task, which is run on a single compute core, by re-distributing the com-
putational load over a number of cores that can run in parallel at the same time.
For example, consider the time-consuming task of trying to invert a number of very
large matrices using a single core—clearly this task will be completed much faster by
assigning different matrices to their own cores.

A modern laptop computer typically contains a single processor, e.g. a central

processing unit, made up of between 4 — 20 compute cores (hence why they are

Chapter 1. Introduction

| HPC | 4 | Nodes | - | Processors | - | Cores | - | Transistors |

Figure 1.1: A hierarchy of computing terminology. A high performance computer
(HPC) cluster is a collection of compute nodes (sometimes referred to as servers) linked
together by fast interconnects. These nodes typically contain a few processors, each
made up of a number of compute cores that carry out computations. Each of these
cores are, in turn, made up of billions of transistors.

often referred to as a multi-core processors). These cores carry out computations
on our behalf via a complex network of billions of transistors—see Figure 1.1 for a
hierarchy of computing terminology. In Figure 1.2(a), we can see that (historically)
the number of transistors that fit onto a core doubled approximately every two years
(in line with Moore’s law (Moore, 1965)). However, processors clock speeds (i.e. the
typical frequency at which computations are carried out) have plateaued over the
past twenty years or so. This is because faster (serial) computations require more
power, generating heat that can damage the core if not properly cooled (which would
require even more power). Focus has therefore turned to parallel computing where
multi-core processors, with more balanced clock speeds and power consumption, can
be used to carry out multiple serial computations in parallel. Parallel computing
is becoming increasingly necessary in a number of disciplines to reduce excessive
simulation runtimes and overcome the aforementioned physical limitations arising on
machine hardware. These trends, as well as Moore’s law coming to an end (Shalf,
2020), are driving the need to develop new algorithms, or convert existing serial ones,
that can exploit parallel computing architectures.

High performance computers (HPCs), perhaps more commonly known as super-
computers or computing clusters, are the typical platform for deploying large-scale
parallel algorithms and contain a number of compute nodes, each made up of hun-
dreds, if not thousands, of interlinked compute cores. The performance of the fastest
HPCs in the world, typically measured by the number of floating point operations
per second (FLOPS) taken to solve a very large dense linear system (i.e. Az =b), is
increasing year on year—see Figure 1.2(b). For reference, a typical modern laptop
can carry out O(10'?) FLOPS while the fastest HPC in the world! contains over
8 million cores and can carry out O(10'8) FLOPS. HPCs are currently used to
simulate solutions to some of the world’s most computationally demanding problems
in numerical weather prediction (ECMWTF, 2023), genome sequencing (Yale, 2023),
machine learning (Sevilla et al., 2022), and plasma physics (Dudson et al., 2009).
Numerical simulations, often referred to as the third pillar of science (alongside theory

and experimentation), aid the study of physical phenomena that are analytically or

! As of 2023, the fastest HPC in the world was Frontier. Hosted at the Oak Ridge Leadership
Computing facility in Tennessee, United States, it was the first HPC to breach the exascale barrier—
more details available at https://www.olcf.ornl.gov/frontier/.

https://www.olcf.ornl.gov/frontier/

1.1. Parallelism for differential equations

108 o Transistors (Thousands) ol o Fastest HPC that y(vnr‘
o Frequency (MHz) w@O]
& Power (Watts) @@ @ 1018 Exascale "
1060 L© Cores o)] o
- P
g omm
g o
104k g 1015 Petascale -
- -
3 o
N 2 mmo
10° ¢
(s} Dm
1012 Terascale o0
° o
&
100 2 2 8 Ddfmdj
1970 1980 1990 2000 2010 2020 1990 1995 2000 2005 2010 2015 2020 2025
Year Year
(a) (b)

Figure 1.2: (a) The history of computer processor properties. Shown are the
number of transistors that can fit onto a compute core (black circles), typical clock
speeds/frequencies of a processor (purple diamonds), typical power consumption of a
processor (blue triangles), and the number of cores that fit onto a given processor (red
squares). (b) The performance of the fastest high performance computer each year since
1993, measured in terms of floating-point operations per second (FLOPS). Data sources:
(a) Rupp (2022) and (b) TOP500Project (2022).

experimentally intractable. These problems can take a very long time to simulate (on
the order of hours, days, and weeks), even being computationally infeasible in some
cases, and so there is a demand for algorithms that can exploit the maximum possible
degree of parallelism to reduce simulation runtimes. At present, HPCs with increasing
numbers of compute cores are being built to tackle these gargantuan tasks, however,
we have yet to fully develop the necessary parallel algorithms that can exploit such
architectures. The development of faster and easier-to-use parallel algorithms is
becoming increasingly important? and so a particular focus of this thesis will be
on improving existing parallel algorithms for solving differential equations. Note
that throughout this thesis, we will slightly abuse terminology by instead referring
to “compute cores” as “processors”’—a common switch made throughout parallel

computing literature.

1.1.2 What are parallel-in-time methods?

The bedrock of many complex models in science involve solving systems of ordinary,
partial, or stochastic differential equations (ODEs, PDEs, or SDEs) using numerical
methods (Danby, 1997; Kloeden and Platen, 1992; Trefethen et al., 2017). Of
particular interest to us are IVPs, which model the evolution of some quantity of
interest over time (as well as space for PDEs) from a single initial condition or initial

state under the action of a differential equation. To solve an IVP numerically, one

2The BxCALIBUR research programme is aiming to deliver the next generation of HPC software
in areas such as particle hydrodynamics, materials simulation, and plasma turbulence in fusion
modelling. Further use cases can be found at https://excalibur.ac.uk/.

https://excalibur.ac.uk/

Chapter 1. Introduction

typically uses a time-stepping scheme (more on these in Chapter 2), in which the
solution state of the IVP at a given time step is used to approximate the solution at
the next time step—an inherently sequential process that is carried out on a single
processor. The computational time taken to solve an IVP depends on a myriad of
factors including, but not limited to, its type (linear/nonlinear /stiff/non-stiff), size
(number of equations), the accuracy of the time-stepping method, the length of the
interval of integration, and the number of discrete time steps taken (in addition to a
discrete spatial mesh, if present). We are interested in problems where the interval
of integration and/or the number of time steps required to solve the problem is large,
leading to lengthy simulation runtimes.

For IVPs that have a spatial component (typically spatio-temporal PDEs), bound-
ary conditions are prescribed on the spatial domain and so one can solve the problem
in space either serially or in parallel, using well established domain decomposition
methods (Quarteroni and Valli, 1999; Toselli and Widlund, 2005). Domain decompo-
sition methods partition the spatial domain into smaller subdomains, solving on each
subdomain in parallel using its own processor (with the aid of boundary conditions?),
and then combine the calculated solutions at the subdomain interfaces (which can
overlap) in an iterative manner—see Dolean et al. (2015) for further details. Although
very efficient for high dimensional systems, yielding high parallel speedup, spatial
parallelism eventually begins to saturate, i.e. using additional processors does not
result in increasing speedup due to excessive overhead serial communication costs
between the processors. The total numerical speedup gained from the spatial paral-
lelism will then bottleneck in the temporal domain, limited by the serial nature of the
time-stepping scheme in use. For example, modern algorithms used to simulate Edge
Localised Modes in turbulent fusion plasmas can take anywhere between 100-200
days to integrate over a time interval of just one second (Samaddar et al., 2019).

Sequential bottlenecks in time have motivated the research and development
of PinT methods, providing ways to integrate IVPs over long time intervals where
solutions would be unobtainable (in realistic time-frames) using sequential time-
stepping schemes. One way to integrate in a non-sequential manner, similar to
spatial parallelisation, is to discretise the time interval of an IVP into N “slices”
upon which N smaller IVPs are solved in parallel using existing sequential time-
stepping schemes. The principle of causality, however, poses a fundamental problem.
When solving IVPs, solution states at later times are determined by solution states
at earlier times, starting from some prescribed initial condition at the beginning
of the interval of integration. Therefore, prior to the parallel integration of the N
smaller IVPs, we require N initial values from which to begin integration in each

time slice, of which NV — 1 are unknown a priori—see Figure 1.3. This contrasts

3Boundary conditions are typically constraints on the value (e.g. Dirichlet conditions) and/or
the derivatives (e.g. Neumann conditions) of the solution at the boundaries of the spatial domain.

1.1. Parallelism for differential equations

A
e
/»
’/‘
?
%
%

/
u? o

to ty ta t3 ty ts t

Figure 1.3: Exact solution u(t) to a scalar ODE at discrete times tg,...,t5 (black
dots), typically obtained using a serial time-stepping scheme on one processor. To
calculate the solution in parallel, each time slice [t,—1,¢,] is assigned its own processor
P,, and each smaller IVP is solved—the issue being that N — 1 of the N initial values
from which to begin integration are unknown a priori to simulation.

with spatially-parallel methods which can take advantage of the fact that there are
typically at least two boundary conditions prescribed in space, e.g. left and right
boundaries in one-dimensional. Using domain decomposition methods, the solution
can be calculated from the left and right boundary conditions simultaneously and
iteratively matched across some overlapping or non-overlapping interface in the
middle. This not so subtle difference makes the time-parallelisation problem much
less intuitive to solve and suggests why domain decomposition methods have a rich
history dating back to Schwarz (1870) while PinT methods have only been studied
for the past 60 years.

The first PinT algorithm was proposed by Nievergelt (1964), the idea being
that one could locate approximate initial conditions for the N — 1 smaller IVPs by
solving the entire IVP using a cheap (coarse) time-stepping scheme. The N IVPs
are then solved in parallel using the original (more expensive) time-stepping method
and the resulting trajectories are matched across time slice boundaries using an
interpolation scheme—a more detailed account of his algorithm will be given in
Chapter 3. This seminal contribution spawned an entirely new field of work, where
there has been extensive work on a number of different PinT methods?* which were
categorised by Gander (2015) into four (not necessarily distinct) groups, namely:
multiple shooting, multigrid, waveform relaxation, and direct methods. Our focus
will be on multiple shooting algorithms for ODEs (e.g. Nievergelt’s method), where
one partitions the time domain into a set of slices and attempts to solve in each
one in parallel, enforcing continuity conditions at the slice boundaries—a number
of which have been successfully developed and tested (Bellen and Zennaro, 1989;
Chartier and Philippe, 1993; Lions et al., 2001; Saha et al., 1997). Within the other

4A collection of resources on PinT methods including code repositories, publications, workshops,
and other materials can be found at http://parallel-in-time.org,/.

http://parallel-in-time.org/

Chapter 1. Introduction

categories, PinT methods have been designed to solve IVPs with a hierarchy of coarser
time/space grids (multigrid), domain decomposition methods (waveform-relaxation),
and with modified existing sequential time-stepping schemes (direct methods). For
an overview of these methods and other state-of-the-art in PinT algorithms, refer
to Ong and Schroder (2020). Being able to solve computationally intractable (with
sequential methods) IVPs that evolve on different timescales over very long time
intervals whilst possibly exhibiting metastability and chaotic behaviour are challenges
that modern PinT methods need to be able to handle. Promisingly, a number of
PinT methods have already been demonstrated to work with spatial parallelisation
techniques (Christlieb et al., 2012; Gander et al., 2013a; Haynes and Ong, 2014;
Samuel, 2012). With the advent of exascale HPCs on the horizon (Mann, 2020),
increased attention is being paid to develop large-scale PinT methods® and we too

will focus our efforts on furthering this goal.

1.1.3 Our focus: Parareal

In this thesis, we focus on a particular PinT method known as the Parareal algorithm,
an easy-to-use multiple shooting method first proposed by Lions et al. (2001).
Since its inception, Parareal has become increasingly popular due to its relatively
straightforward implementation and demonstrable effectiveness in providing IVP
speedup for a range of problems spanning molecular (Baffico et al., 2002; Engblom,
2009; Legoll et al., 2020, 2022) and fluid dynamics (Fischer et al., 2005; Garrido
et al., 2005; Trindade and Pereira, 2006), to geophysical processes (Clarke et al.,
2020; Samuel, 2012) and nuclear physics (Baudron et al., 2014a,b; Grigori et al.,
2021; Samaddar et al., 2010). Based on ideas from Nievergelt (1964) and Chartier
and Philippe (1993), Parareal partitions the time domain into N slices, assigning a
processor to each one, and solves the smaller IVPs in parallel using a computationally
expensive, high accuracy, serial time-stepping method referred to as the fine solver—
recall Figure 1.3. To locate the N — 1 unknown initial values from which to begin
integration and therefore avoid the pitfall created by the causality principle, Parareal
uses a second serial time-stepping method (referred to as the coarse solver) that is
computationally cheaper and of lower numerical accuracy compared to the fine solver.
The algorithm iteratively locates a solution to the IVP by combining the coarse and
fine solutions using a predictor-corrector (PC) scheme, derived by discretising the
Newton-Raphson method—a more detailed derivation and exposition of Parareal is
given in Chapter 2. The algorithm stops after £ < N iterations, once a pre-specified
tolerance is met.

The defining metric of performance when using Parareal is the number of iterations

®The TIME-X project is one particular example of an initiative that aims to showcase parallel-in-
time methods that have been developed in academic settings on massively parallel HPC architectures,
see https://www.time-x.eu/.

https://www.time-x.eu/

1.2. Probabilistic numerics for differential equations

k taken until the algorithm stops. The aim being to calculate a solution to the
IVP that has numerical accuracy of the order of the high accuracy fine solver faster
than the fully serial computation. In terms of runtime, each iteration of Parareal is
approximately equal to a single (computationally expensive) run of the fine solver
over a time slice, and so the smaller k is, the higher the parallel speedup realised
by Parareal. Speedup is calculated by taking the ratio of the time taken for the
fine solver to run sequentially over all time slices and the time taken for Parareal
to run—roughly approximated by the ratio N/k. Therefore, if we can reduce the
number of iterations by even just a few, we can dramatically reduce Parareal runtimes
and increase parallel speedup.

When Parareal uses a low accuracy coarse solver, it typically requires more
iterations to converge and so there is an increasing demand for fast, but numerically
accurate, coarse solvers for particular [IVPs—we will revisit the importance of having
a cheap coarse solver in Chapter 2. Whilst certainly a worthwhile goal, our aim is not
to develop faster and more accurate coarse solvers but to instead try to make better
use of the simulation data already available in Parareal, specifically the solution
data generated by the coarse and fine solvers. The primary aim of this thesis is to
investigate whether ideas from PN (next section) can make more efficient use of the
Parareal simulation data to guide Parareal to the N — 1 unknown solution states
in fewer iterations than is currently possible. In addition, the hope is that the PN
methods may also be useful in returning a measure of uncertainty over the Parareal
solution, something that does not happen in Parareal and is typically calculated
a posteriori. We chose to work with Parareal (rather than another PinT method)
because the two solvers return distinct datasets that we can manipulate with our
probabilistic techniques whereas other PinT methods do not seem to generate such
datasets. In the next section, we describe what PN methods are, how they are
used to solve differential equations, and how we can exploit them within the PinT

framework.

1.2 Probabilistic numerics for differential equations

1.2.1 What are probabilistic numerical methods?

The purpose of many (classical) numerical algorithms is to locate approximate
solutions to problems that typically have no closed-form solution. Consider for
example, the sequential time-stepping methods mentioned in the previous section,
which are designed to approximate the solution to an IVP on a discretised set of
points in time (Hairer et al., 1993). Most time-stepping methods are derived in such
a way that the error, with respect to the unknown exact solution at each time step, is
bounded by a scalar multiple of the time step size to some power (i.e. the local/global

truncation error). In practice, one can often choose a very small time step, solve the

Chapter 1. Introduction

IVP and be done, postponing any error estimation indefinitely (often assuming the
error is negligible). This assumption has traditionally taken root among practitioners,
however, if there exists a computational budget constraining how small the step
sizes can be, it may not be feasible. In general, errors bounds from time-stepping
schemes are assumed to be ‘uniform’, i.e. the probability that the exact solution
lies within the bound is equally likely for any value in the bound. Therefore, if the
IVP solution is to be used to initialise a future (non-probabilistic) computation, e.g.
initial conditions for a different IVP, then the user needs to make a choice about
which solution (within the scalar bound) to use—whose error may not have been
accounted for, and therefore amplified, in the second computation.

PN provides a way to quantify and structure the uncertainty arising from nu-
merical computations by formulating the problem under consideration within the
framework of statistical (often, Bayesian) inference (Hennig et al., 2022). Initially,
the unknown solution to the problem (e.g. the IVP) that we wish to infer, sometimes
referred to as the latent quantity, is assigned a prior probability distribution. This
distribution expresses a belief about the latent quantity and is often informed by
any a priori knowledge about its structure or behaviour. “Data” arising from the
calculations within a simulation, e.g. the vector field evaluations for an IVP, are
treated as observations and are related to the latent quantity by a likelihood func-
tion. This likelihood prescribes a measure of uncertainty (with respect to the latent
quantity) over the observations. The prior and likelihood can then be combined
using Bayes’ theorem, which may require complex (possibly analytically intractable)
calculations, to compute a posterior distribution over the latent quantity, i.e. a
probability distribution over the solution to the problem.

PN methods have many advantages over classical numerical methods. They return
a (posterior) probability distribution over the solution, rather than the point-wise
estimates (on a mesh) given by classical methods, providing an approximation of
the solution (i.e. the “location” of the posterior) and its associated numerical error
(i.e. the “width” of the posterior) if correctly calibrated®. The posterior provides a
much richer description of the numerical uncertainty over the solution and samples
can be drawn that each represent a realistic estimate of the true solution”. In fact,
many classical numerical methods can be recovered as mean or maximum a posteriori
estimates of the corresponding PN method. For example, the posterior mean of the

PN ODE solvers proposed in Schober et al. (2014a) coincide exactly with solutions

SCalibration of the numerical uncertainty refers to the “width”, i.e. the variance/support, of the
posterior distribution and it is important to question “...whether the posterior can indeed be endowed
with an interpretation as a notion of uncertainty, connected to the probable error of the numerical
method” (Hennig et al., 2022, Pg. 12). In other words, can we trust whether the uncertainty
returned by the posterior distribution is a true representation of the error in the numerical method?
Much work is ongoing to show that this is the case (Bosch et al., 2021).

"For IVPs, many PN methods can actually infer the solution at time steps that are not on
the original mesh, something that classical methods cannot do without some form of interpolation
scheme (Bosch et al., 2021; Kramer et al., 2022; Schober et al., 2019).

1.2. Probabilistic numerics for differential equations

obtained by low-order Runge-Kutta methods. Two additional benefits of PN methods,
not possible with classic methods, are that known information about the solution
can be encoded into the prior before simulation and that PN methods can handle
probability distributions as both inputs (priors) and outputs (posteriors), affording
them the ability to propagate uncertainty throughout a sequence of computational
tasks.

This is not to say PN methods have no drawbacks. As mentioned before, appro-
priate priors and likelihoods must be specified in order to yield calibrated posterior
uncertainty estimates—a challenging task if unfamiliar with the problem at hand. In
addition, calculating a posterior distribution is usually more costly than calculating
a point-wise estimate of the solution. However, the benefits of having the calibrated
uncertainty estimates mentioned above can be worth the additional cost if the to-
tal computational budget for a task is limited—some PN methods for differential
equations are now reaching competitive cost in line with classical methods. We will

revisit some of these points in the next section.

1.2.2 Our focus: sampling- and learning-based methods

PN methods play an an important role in solving numerical problems and quantifying
epistemic uncertainty, i.e. the uncertainty due to a lack of information, in a number
of different application areas and have deep-seeded roots in history (Hennig et al.,
2015; Oates and Sullivan, 2019). With the aforementioned advances in computing
technology over the last half century, there has been renewed interest in PN®, with
work being undertaken to strengthen its mathematical foundations (Cockayne et al.,
2019) and showcase its capabilities in many different areas of classical numerical com-
putation, including quadrature, linear algebra, optimisation, and most importantly
for us, differential equations—a breakdown of these methods can be found in Hennig
et al. (2022). There are two main approaches to solving IVPs using PN methods
which we will refer to as sampling- and learning-based methods.

Sampling-based methods solve IVPs by using random perturbations within
classical (deterministic) one-step numerical integrators, e.g. forward/backward Euler
schemes. One of the first such methods was proposed by Conrad et al. (2017), in which
they perturbed solutions (at each time step) from a deterministic integrator using
a sample from an appropriately scaled Gaussian distribution. These samples were
assumed to represent the numerical error generated by the deterministic integrator
and so convergence results were derived showing that stochastic numerical solutions
were of the same accuracy as those obtained deterministically—see Figure 1.4(a)

for an illustration comparing the deterministic and stochastic solutions. Therefore,

8There exists a strong community dedicated to PN research with extensive work going into
developing ProbNum (https://probnum.readthedocs.io/en/latest/), a Python package for carrying
out PN computations.

https://probnum.readthedocs.io/en/latest/

Chapter 1. Introduction

u(t) — Deterministic u(t) ——— Mean + 2 stan. devs.

— Stochastic

I I I I I I I I - I I I I I I I I =
to t1 ta ts3 ta ts te tr tg U to t1 ta ts3 ta ts te tr tg U

(a) Sampling-based (b) Learning-based

Figure 1.4: Illustrative solutions to a scalar ODE, located using PN solvers (on
one processor). (a) Deterministic time-stepping scheme solution (black) vs. stochastic
solutions (blue) generated by a sampling-based solver that perturbs solutions from a
deterministic time-stepping scheme. Simulating sufficiently many independent stochastic
solutions using the the sampling-based solver forms a distribution over the solution to
the ODE. (b) Posterior distribution over the ODE solution generated by a learning-based
solver. The distribution is depicted by its mean (black) and two standard deviations
either side of it (light purple regions).

by solving the ODE multiple times (in an embarrassingly parallel manner) one can
obtain a (non-Gaussian) distribution of solutions that represent all® possible ODE
trajectories obtainable with the deterministic integrator—useful for solutions which
exhibit chaotic behaviour or exist near invariant manifolds in phase space. In follow
up work, Lie et al. (2019, 2022) derived stronger convergence results, allowing for
more general (non-Gaussian) perturbations, and in Abdulle and Garegnani (2020)
the authors instead perturb the time step to preserve geometric features of the
deterministic integrator.

On the other hand, learning-based methods formulate the IVP from a Bayesian
point of view. Work on these methods began with Skilling (1992), where he devel-
oped the first “ODE filter”, a solver that uses Gaussian process (GP) regression
(O’Hagan, 1978; Rasmussen, 2004) to calculate direct probabilistic solutions to the
IVP. GP regression models are statistical models that can infer the value of an
unknown (expensive-to-simulate) function using multivariate Gaussian distributions
and a finite number of evaluations of the function—an explanation of GPs will be
given in Chapter 5. ODE filters solve sequentially in time, conditioning the GP
prior distribution on solution and derivative evaluations (observations), to obtain a
posterior over the ODE solution (Hennig and Hauberg, 2014; Schober et al., 2014a,b).

Figure 1.4(b) illustrates what a posterior distribution over the solution to an ODE

9In reality, not all possible trajectories can be realised as this would take an infinite number of
independent simulations. A well-approximated distribution of trajectories can be obtained with a
reasonable number of independent simulations.

10

1.2. Probabilistic numerics for differential equations

looks like. The inefficiency of standard GP regression methods lead to the devel-
opment of more advanced ODE filters that instead use Gauss-Markov processes
(Dksendal, 2013) and can harness the computational speed of Kalman filters (Sarkka,
2013) to calculate the posterior distribution using observations sequentially. Instead
of calculating a numerical solution on the mesh, as classical integration methods
do, these ODE filters can also return a probability measure over the solution at
times off the mesh (Bosch et al., 2021; Schober et al., 2019; Tronarp et al., 2019;
Wenger et al., 2021) and are becoming computationally competitive with respect
to classical solvers (Kersting et al., 2020; Kramer et al., 2022). At any point in
time, one can take a ‘slice’ (vertically) and obtain a distribution over the solution
to the ODE. This direct method of calculating a posterior distribution differs from
the sampling-based approach in which the ODE has to be solved numerous times
to obtain a distribution. Sampling- and learning-based methods, however, are not
necessarily mutually exclusive—PN ODE solvers have been developed that use ideas
from both (Chkrebtii et al., 2016; Tronarp et al., 2019).

As previously hinted at, the reason we discuss these two approaches is that
Parareal generates a lot of simulation data, i.e. fine and coarse solution information,
most of which (after being used once) is “forgotten” by Parareal in a Markovian-
like manner. By this, we mean that Parareal uses the solution data only once in
the PC update (the coarse data is used twice) before generating new simulation
data for the next update. We wish to take advantage of the valuable information
that this data gives us about how the fine and coarse solvers propagate a solution
state from one time step to the next. Using the sampling-based approach, we will
use the simulation data to construct probability distributions to model where we
believe the true N — 1 unknown initial values are. From these distributions we can
sample candidate solutions and explore the solution space much more freely than is
possible with just Parareal and try to reduce the number of iterations taken until
convergence—this work will form the bulk of Chapters 3 and 4. With regard to the
learning-based approach, we plan to use the simulation data as observations in a
GP emulator'? to try to infer solution states from the solvers without having to run
them (at expensive cost). In effect we will attempt to “learn” how the solvers behave
and then try to infer the NV — 1 solution states faster than Parareal can—this work
will be presented in Chapters 5 and 6. In the next section, we will explicitly state
our aims, describe how we plan to achieve them by combining PinT methods with

some of the PN techniques discussed, and outline the remainder of the thesis.

'GP emulators work in the same way as GP regression models except that the observations are
typically outputs of computer-based simulations (in our case, the fine and coarse solvers) and have
zero observation error, i.e. they are “noise-free”.

11

Chapter 1. Introduction

1.3 Thesis aims and outline

Until now, PinT methods have been derived from the classical numerical analysis
viewpoint, yielding deterministic solutions and fixed rates of speedup when solving
a given IVP. This works well in many situations, however, when speedup for a
particular type of IVP is limited, these methods do not make full use of the solution
data they generate to reduce runtimes—something mentioned in Maday and Mula
(2020) in the context of domain decomposition and high-order time-stepping but yet
to be investigated in much detail. In a similar vein, PN methods have been designed
to solve IVPs in a purely sequential manner, suffering the same computational
intractability issues as sequential time-stepping methods when solving IVPs with
long time intervals—it has been hinted that parallelising these methods is a next
natural next step in their development (Kersting and Hennig, 2016).

We wish to fuse these ideas together to accelerate the convergence of Parareal
by making more efficient use of the fine and coarse solution information generated
throughout a simulation. The PN framework for solving IVPs is built in a way that
naturally allows us to use the simulation data from Parareal and perhaps even re-use
it in future simulations—something that existing PinT methods do not do. The
long-term goal is to develop a fully probabilistic PinT method that can solve an
IVP in parallel and return a posterior distribution with a meaningful measure of
uncertainty over the IVP solution.

In this thesis, we aim to:

I. derive, analyse, and test the first probabilistic PinT algorithms by incorporating
some of the sampling- and learning-based techniques from PN into the Parareal

algorithm.

II. demonstrate that our algorithms yield additional numerical speedup vs. the

standard Parareal algorithm when solving nonlinear IVPs on HPC facilities.

ITI. show that solutions obtained from our algorithms are accurate by verifying

convergence both numerically and analytically.

IV. if possible, generate probabilistic solutions to the IVPs (like the aforementioned
PN methods do).

V. assess the long-term viability of our algorithms to determine whether they can

in fact provide numerical speedup for large-scale IVPs.

How we achieve these aims and structure the remainder of the thesis is as follows.
In Chapter 2, we begin by setting up the IVP, a time-dependent system of
(potentially nonlinear) ODEs that are computationally intractable to solve over a

long time interval using serial methods. We then discuss what kind of ODE systems

12

1.3. Thesis aims and outline

fall under this category and which serial time-stepping methods are available to us.
Following this, we derive the Parareal algorithm from first principles using the work
of Gander and Vandewalle (2007). We explain how it works in practice (along with a
numerical experiment), analyse its computational complexity, review recent work on
error bound analysis, and explore possible options for choosing the fine and coarse
solvers. Furthermore, we describe a number of Parareal variants that have emerged
over the years, discussing which issues (with respect to the classic Parareal scheme)
they attempt to remedy and how these approaches vastly differ from what we are
trying to do.

In Chapter 3, we present our first algorithm, a sampling-based PinT method
we refer to as Stochastic Parareal or SParareal for short (Pentland et al., 2023a).
Instead of integrating forward in time from a single value (in each time slice) given
by Parareal’s PC, we use a pre-specified probability distribution to sample and
propagate a number of candidate initial values forward in time in parallel. The
idea is that, using distributions constructed from known coarse and fine solution
information, this stochastically generated set of initial values explores the solution
space more efficiently and provides a better guess to the solution (the N — 1 unknown
initial values) than those found purely deterministically, accelerating convergence
compared to the classic Parareal algorithm. We begin by examining the sampling-
based PN techniques we propose to use and provide some background for how we
came up with the scheme itself. As with Parareal, we then detail how SParareal works
(now generating stochastic, not deterministic, solutions), analyse its computational
complexity, and present numerical experiments. We demonstrate that, for low-
dimensional ODE systems, SParareal converges in fewer iterations than Parareal
when the number of samples is large enough and can return a measure of uncertainty
over the solution upon multiple simulations of the algorithm.

All numerical experiments in this thesis are conducted in MATLAB with parallel
simulations run on HPC facilities at the University of Warwick. In particular, we
make use of the HPC system known as Avon'!, allowing us to run experiments on
up to a maximum of 512 compute cores (using more cores with MATLAB was not
possible due to software limitations). In the past few decades, simulation methods
have moved to the forefront of scientific research and increasing pressure is being
placed on researchers to uphold standards on computational reproducibility. In light
of this (and to enable further scrutiny of our work), all code written to generate
the computational results in this thesis is available in a public repository'?. This

should allow interested readers to reproduce the numerical experiments and, where

11 Avon is made up of 180 Dell PowerEdge C6420 compute nodes each equipped with two Intel Xeon
Platinum 8268 (Cascade Lake) 2.9 GHz 24-core processors (i.e. 48 cores x 180 nodes = 8640 total) each
with 192 GB DDR4-2933 RAM. For more information, visit https://warwick.ac.uk/research/rtp/sc/.

12P]ease visit https://tinyurl.com/KP-PhD-Thesis. If there are any issues accessing this repository,
please do get in contact.

13

https://warwick.ac.uk/research/rtp/sc/
https://tinyurl.com/KP-PhD-Thesis

Chapter 1. Introduction

simulations may take some time to run on HPC facilities, regenerate the same results

using stored data files.

In Chapter 4, we derive rigorous error bounds for SParareal, demonstrating that
the stochastic solutions converge in the mean-square sense (Pentland et al., 2022).
In particular, we derive both superlinear and linear mean-square errors bounds when
using SParareal with different types of random perturbation, e.g. perturbations
that may or may not depend on the current state of the system at which they are
generated. In order to do this, we formulate SParareal in a slightly different way to
the version presented in Chapter 3, however, the analysis is still valid in the case
where we take single random sample at each time slice (this will become clear later
on). We perform a number of numerical experiments, validating our theoretical
results by showing they align with the numerical errors generated by simulations of

SParareal.

In Chapter 5, we approach the PinT problem from a more Bayesian (rather than
frequentist) perspective, addressing some of the issues associated with SParareal. We
present our second algorithm, a learning-based PinT method we refer to as GParareal
(Pentland et al., 2023b). To find the N — 1 unknown initial values in fewer iterations,
we model the correction term in Parareal’s PC with a GP emulator, trained on
all coarse and fine solution information obtained throughout the simulation (the
amount of which increases with each iteration). The idea is to locate more accurate
corrections and avoid throwing away valuable solution data. As before, we provide an
overview of how the scheme was conceptualised and discuss some of the background
material associated with how other learning-based methods have been used in PN
and Parareal. We then derive GParareal, analyse computational complexity, provide
an error bound on the solution at a fixed iteration (that depends on how well
the emulator is trained), and carry out extensive numerical experiments to show
that GParareal can converge faster than Parareal for a number of low-dimensional
nonlinear ODE systems. In addition, we demonstrate how GParareal can re-use
simulation data from a previous simulation (legacy data) of the same IVP, whether
it be from solving from a different initial condition or over a different time interval,
to converge in even fewer iterations than Parareal. We also show that GParareal can
converge for IVPs that Parareal cannot, i.e. when the coarse solver is too coarse for
standard Parareal to converge. We note in the complexity analysis and corresponding
numerical experiments that training the GP emulator comes at an additional cost

compared to Parareal and explore options to work around this.

In Chapter 6, we push GParareal to its limits by investigating how it performs
when used to solve the one-dimensional viscous Burgers’ equation and the two-
dimensional FitzHugh-Nagumo system. We aim to analyse how much the GP
emulation process impacts the realisable speedup that can be obtained from GParareal

by running experiments with different types of legacy data (more on this later) and

14

1.3. Thesis aims and outline

an increasing number of spatial discretisation points (which increases the size of
the ODE system to be solved). These results help us pinpoint where algorithm
performance is hindered and enable us to suggest a few ways to optimise GParareal’s
implementation.

We conclude in Chapter 7 with a short discussion on the significance and reper-
cussions of the algorithms developed in this thesis, collectively assessing the quality
of our results with respect to our original aims. We then finish by setting the stage

for future work in the area of probabilistic PinT algorithms.

15

Chapter 2

The Parareal algorithm

Overview

The purpose of this chapter is to lay the foundations for deriving, analysing, and
testing our probabilistic PinT algorithms. We begin by stating the general form of
the IVP to be solved repeatedly throughout this thesis and highlight the types of
IVP that fall within this category. The objective is to find a numerical solution to
such IVPs on a discrete temporal mesh. This solution, however, is assumed to be
computationally intractable to calculate in real time using (expensive) sequential
time-stepping schemes. We will outline a few classic time-stepping methods that we
make use of, justifying why they have been selected over more advanced methods.
This will set the stage for calculating a solution to the IVP in parallel using the

Parareal algorithm.

Next, we show how Parareal can be derived from a multiple-shooting perspective
and explain how it works in practice, making use of not just one, but two sequential
time-stepping schemes. We outline its computational complexity, how it (typically)
schedules computational tasks in the simulation, and how it stops once a solution is
found—all aspects of which will be important when comparing to our algorithms in
later chapters. We state and prove an existing error bound on the Parareal solution
with respect to the fine solver solution, the assumptions and proof techniques of
which we will use to derive bounds for our own algorithms. A short discussion on
how to chose the two sequential time-stepping schemes will precede a numerical
experiment in which we demonstrate how runs in practice. To conclude, we discuss
variants of Parareal that have emerged since its inception that try to improve certain
aspects of its performance, both in general and for specific types of IVP. This will
provide a starting point for discussing related works that have attempted to use
sampling- or learning-based methods to improve Parareal—more details of which

will be provided in Chapters 3 and 5, respectively.

16

2.1. Initial value problem setup

2.1 Initial value problem setup

Throughout this thesis, we will be concerned with solving systems of d € N ODEs of

the form

((11—1; = f(t,u(t)) over te€ty,T], with wu(t))=u’€lC RY, (2.1)
where f: [to,T] x U — R? is a (potentially nonlinear) vector field, w: [to, T] — U is
the time-dependent solution, and u? is the initial value at time ty;. We will assume
that f is sufficiently smooth such that the IVP (2.1) has a unique solution for
all initial conditions of interest and that [tp,7] C R such that T' < co. We seek
numerical solutions U,, ~ u(t,) to (2.1) on a pre-defined mesh t = (to,...,tn),
where t,4+1 = t, + AT for fixed AT = (T —t¢)/N. In the forthcoming sections, each
[tn,tnt1] for n =0,..., N — 1 will be referred to as a “time slice”, where N is the
total number of time slices.

IVPs of the form (2.1) occur frequently when modelling physical processes through-
out nature. They arise in diverse applications areas ranging from mathematical
epidemiology (Murray, 2002) and neuroscience (Brzychczy and Poznanski, 2013)
to fluid and orbital mechanics (Danby, 1997). In many applications, such as the
simulation of plasma dynamics, spatio-temporal PDEs need to be solved and are
usually spatially discretised via a method of lines, e.g. finite differences or spectral
methods, among others (Trefethen, 2000). This discretisation process results in
a large system of ODEs such as (2.1), where d scales with the number of spatial
locations the PDEs are being resolved at.

In any case, we are concerned with IVPs where one or more of the following

aspects:
(i) the interval of integration, [to, 7],
(ii) the number of mesh points, N + 1,
(iii) or the wallclock time (in seconds) to evaluate the vector field, f,

is so large that numerical solutions U,, take hours, days, or even weeks to obtain
using classical sequential time-stepping schemes (Butcher, 2016; Hairer et al., 1993).
Henceforth, the term time-stepping scheme may be used interchangeably with the
terms numerical integrator, solver, method or flow map—more on these in the next
section.

Many different types of IVP fall into a subset of the three categories above, with
the majority facing issues related to a combination of (i) and (ii) (as they are often
intrinsically linked). The number of mesh points NV + 1 required to integrate over very
long time intervals [tg, T typically needs to be sufficiently large (i.e. AT needs to be

sufficiently small) such that stability conditions for the chosen solver are satisfied.

17

Chapter 2. The Parareal algorithm

For very long time intervals, AT may need to be orders of magnitude smaller than
the length of [tg, T, drastically increasing the number of computations required and
making the calculation infeasible. For example, systems where the dynamics are stiff,
i.e. systems in which the solution varies very rapidly at certain times but very slowly
at other times, tend to require a very high number of mesh points to resolve. This
is because the solver becomes numerically unstable unless AT is very small in the
stiff intervals, leading to an (unnecessarily) slow computation when integrating in
the non-stiff intervals. This occurs in many applications, e.g. fluid mechanics and
chemical reaction modelling, where dynamics evolve on both slow and fast time scales,
often orders of magnitude apart. While there do exist solvers that can adaptively
increase/decrease the size of the time step to deal with stiff dynamics, they still suffer
from computational intractability when [tg,T] is large enough (relative to the fast

timescale).

A particularly challenging application area for numerical time-stepping methods
is simulating magnetically confined fusion plasmas (i.e. ionised gases) in tokamak
devices (Goldston, 1995). Designing a working thermonuclear fusion reactor that
can control plasmas at extreme temperatures and densities is the key to generating
a clean and sustainable global energy source (CCFE, 2023). Simulating IVPs that
describe plasma behaviour provides us with a way to avoid the costly and difficult task
of running physical experiments in a tokamak, however, they are notoriously time-
consuming to simulate. One aim is to understand the evolution of temperature and
particle densities on a macroscopic time-scale (i.e. on the order of seconds/minutes),
as they are the primary quantities of interest governing reactor performance. However,
the highly nonlinear transport processes (e.g. heat, particle, and momentum fluxes)
which drive macroscopic behaviour are, in turn, governed by turbulent processes
which evolve on a microscopic time-scale (i.e. microseconds). Simulating plasma
IVPs over a number of seconds (at high spatial resolution) is therefore an extremely
costly multi-scale problem (in both time and space), making plasma simulation a

perfect candidate for PinT algorithms.

Many other motivating examples for long time integration can be found in
systems containing an element of randomness, e.g. SDEs. Although we are solving
deterministic ODEs here, the problems caused by (i), (ii), and (iii) extend to SDEs
because the computational time to solve them still becomes infeasible when using
sequential time-stepping schemes for SDEs. Molecular dynamics is one such example,
in which ensemble averages of trajectories, i.e. solutions to the IVP, are required to
observe dynamics that evolve (or may not even appear) over very long time scales
(Legoll et al., 2022). Such dynamical systems may also exhibit metastability, in which
trajectories spend a long time in certain regions of phase space before transitioning
to another (Grafke et al., 2017). Simulations of these long-time trajectories require

small time steps (limited by the stability of the solver), too many of which lead to

18

2.1. Initial value problem setup

computational intractability.

Other dynamical systems (which do not necessarily contain randomness) can
exhibit chaos, in which trajectories with initial conditions close to one another
diverge exponentially over time. Simulations of these trajectories require small time
steps, not to maintain stability of the solver, but to minimise the divergence of the
numerical solution from the true solution when errors begin to accumulate over time.
With regards to the final point (iii), if a spatio-temporal PDE contains particularly
difficult terms involving nonlinearities, integrals, or high-order derivatives, the cost
of evaluating the vector field f can be very high. Reducing the number of calls to
the vector field f can become very significant if it is expensive to evaluate, as many

(high-order) numerical methods require large numbers of calls to f.

2.1.1 The objective

Regardless of the type of IVP being solved, we can write the solution to (2.1) at time

tp+1 in integral form

U(tni1) = u(ty) + /t " f(s,u(s))ds, n=0,...,N—1, (2.2)

where the integral is unknown because it depends on the solution w. Different time-
stepping schemes use different methods to approximate the integral in (2.2). The
simplest example being the forward Euler method, i.e. approximating the integral
by AT f(tn,u(t,)). Suppose we have access to a computationally expensive serial
time-stepping scheme, known henceforth as the fine solver Far: U — R%, which
propagates an initial value U, at time t,, over an interval of length AT, returning a
terminal state U,, 1 with high numerical accuracy at time ¢,,1'. For the time being,
we will assume that Far provides sufficient numerical accuracy to the user such that
the solution to (2.1) calculated by Far can be considered ‘exact’, i.e. U, = u(t,).

The objective is to calculate the exact solutions
Un+1 =]:AT(Un)v for n= 0, ey N — 1, (23)

where Uy := u', without running Far N times sequentially, as this calculation is
assumed to be computationally intractable. For perspective, one should expect that
running Far over a single time slice, or equivalently calculating (2.3) for a single n,
will take on the order of minutes or hours, thereby making the computation of (2.3)
for all n infeasible in real time. Next, we discuss some possible options for choosing
Far.

'We should mention that if (2.1) is nonautonomous, then Far should depend explicitly on ¢,
(and possibly tn+1), however, the extra notation is burdensome and so we drop it. Note, however,
that all of the algorithms described in this thesis work for nonautonomous IVPs.

19

Chapter 2. The Parareal algorithm

Sequential time-stepping methods

Numerical schemes for integrating IVPs, i.e. approximating the right hand side of
(2.2), have been extensively developed and analysed over the past century (Butcher,
2016; Hairer et al., 1993). They are typically categorised into two classes: single- and
multi-step methods. Our focus will be on single-step methods (such as Far), that
take a single initial state and propagate it forward in time (under the action of the
differential equation), returning a terminal state?. In particular, we will let Far be
a single-step method that is allowed to take multiple (smaller, §t < AT') single-steps
in order to calculate the terminal state—it will become clear as to how this works
when we detail the Parareal algorithm in the next section (see Figure 2.1).
One-step methods take many forms and some have properties that make them
more suited to solving particular types of IVPs than others. Conceptually, the
simplest to understand and implement are pth-order explicit Runge-Kutta methods
(denoted RKp), which return a solution state at ¢,,+1 which depends only on the state
of the system at time ¢,, (Kutta, 1901; Runge, 1895). By pth-order, we mean that
the method accumulates local truncation error O(ATP*L) after each step forward in

time. An explicit s-stage RKp method?® is written

S
Up1 =U,+ AT bik; for n=0,...,N—1, (2.4)
=1
where
i—1
ki=f <tn + AT, Uy, + AT Z az‘j"b')- (2.5)
j=1

The term A = (a;j)i j=1,.. s is known as the RK matrix, b = (b;)i=1,... s is the weight
vector, and ¢ = (¢;)i=1,....s is the vector of nodes (all of which can be collated in a
Butcher tableau). For example, the forward Euler (or explicit RK1) scheme, which

has local truncation error O(AT?), is a one-stage method given by
U1 =U, + ATf(tn,Un) for n=0,...,N —1.

Explicit RK methods tend to be the simplest to implement, requiring little work to

calculate each step, however, they typically require very small time steps to remain

2Multi-step methods are very powerful tools that use multiple initial states between [trs tnt1] tO
calculate the terminal state at ¢,41. Whilst they can be used to solve (2.1), they are not compatible
with the classic formulation of Parareal (see Section 2.2) without some form of adaptation (Ait-Ameur
et al., 2020, 2021). In addition, they do not work with our probabilistic PinT algorithms (yet!) and
so we do not consider them here.

3The number of stages s in an explicit RKp method refers to the number of intermediate
evaluations of the vector field f (between [tn,tn+1]) that are required in order to estimate the
solution at tn41. It has been proven that s > p (Butcher, 2016, Theorem 324A) and so we omit the
s-stage notation when referring to an RKp method.

20

2.1. Initial value problem setup

numerically stable—particularly problematic for stiff systems.

On the other hand, we have pth-order implicit Runge-Kutta methods (denoted
implicit RKp), which return a solution state at time ¢,41 which depends on both
the current and future state of the system. U, is calculated the same way as in
(2.4), except that the summation inside the k; term (2.5) ranges over j = 1,...,s,
meaning that both the left and right hand sides of (2.4) depend on the state U, .

To see this more clearly, consider the backward Euler (or implicit RK1) method
U,t1=U,+ ATf(tn + AT, Un+1) for n=0,...,N —1.

To calculate U,,+1, a (nonlinear) system of equations needs to be solved, making
implementation of implicit methods slightly more involved and costly than an explicit
method. The method does, however, remain numerically stable when taking much
larger time steps, meaning that fewer overall time steps are needed to solve over the
entire time interval. High order numerical accuracy is of course desirable when using
either explicit or implicit methods, however, as the accuracy of the method increases

the computational cost per time step (typically) increases too.

Besides RK methods, there are a wide variety of highly specialised solvers
available for tackling particular types of IVP. Examples include adaptive RK methods
that alter step sizes to meet a pre-defined error tolerance (useful for stiff systems)
and geometric/symplectic methods that preserve certain features of the exact flow
prescribed by the vector field (e.g. energy). In this thesis, however, we will use our
own purpose-built pth-order explicit and implicit RK methods to carry out numerical
experiments on Parareal, SParareal, and GParareal. More often than not, ODE
solvers provided in packages and built-in software are highly optimised for speed and
performance, making use of adaptive time-stepping, stiffness detection, and error
control that we avoid as not to interfere with our experiments. In particular, we wish
to be able to control the number of time steps in each time slice, knowing exactly how
long each slice takes to run in real time (which increases linearly with the number of

time steps in the case of explicit RK methods).

Whilst more complex methods such as adaptive solvers may be more optimal for
integrating certain (e.g. stiff) IVPs, they can result in load imbalance when deployed
in PinT algorithms. Load imbalance arises when some processors finish their tasks
faster than others, having to wait idly before being allowed to execute the next
task and therefore leading to speedup degradation. When using adaptive solvers in
Parareal, for example, integration in some time slices may be faster than in others (if
the dynamics are stiff in some but not others) and so they can interfere with wallclock
time and speedup estimates without proper parallel scheduling workflows (which
we do not focus on). To more clearly contrast and compare our probabilistic PinT

algorithms with Parareal we postpone implementation of more advanced solvers to a

21

Chapter 2. The Parareal algorithm

future work?.
In the next section, we will explain how Parareal iteratively locates approximations
U" to U,, (where k =0,1,2,... is the iteration number) using two such sequential

time-stepping schemes, one fine- and one coarse-grained.

2.2 The algorithm

2.2.1 Derivation

Parareal is a deterministic multiple shooting algorithm?, first proposed by Lions et al.
(2001), for numerically integrating IVPs such as (2.1) in a time-parallel manner. To
derive the algorithm from first principles, we will follow the steps outlined in the work
of Gander and Vandewalle (2007). Recall that the goal is to calculate the solution
states U,, that would typically be obtained by applying the fine solver serially over
[to, T'] (i.e. calculating (2.3) sequentially), in parallel. To do this, the IVP (2.1) is
partitioned into N smaller IVPs

du,
dt

= f(t,un(t | Uyn)) on tE€ [tn,tny1), with wy(ty) = U,, (2.6)

for n = 0,...,N — 1, that can (theoretically) be solved in parallel. Each time
slice [tn,tn+1] in (2.6) is then assigned its own processor, denoted Pi,..., Py (an
illustration of this assignment was given in Figure 1.3). We denote u,(t | U,) to
be the solution over [t,,t,+1] given the initial value U, at t = t,, (this dependence
on the initial values will become clear shortly). Note, however, that only the initial
value Uy = u is known, whereas the rest (U, for n > 1) need to be determined
before (2.6) can be solved in parallel. These initial values must satisfy continuity

conditions at the time slices boundaries, i.e.
Uy=u" and U, =wu, 1(t, | U,_1) for n=1,...,N. (2.7)

This (nonlinear) system of N + 1 equations ensures the solutions u, () match at
each t,. Chartier and Philippe (1993) can be credited with suggesting that (2.7)
can be solved for the unknown U, using the Newton-Raphson method, forming the

iterative system

UStt =0, (2.8a)

ouy,

Uﬁj—_ll = Un(tni1 | Urlf) + U,

(tnr | UN(URT = Uy), (2.8b)

4By doing this we try our best to avoid “fooling the masses” when presenting our theoretical
and numerical parallel speedup results in later chapters (Gotschel et al., 2021). We assume that if
our algorithms work for the most basic of time-stepping schemes then they should work (potentially
with some adaptation) for more complex schemes.

°It was shown by Gander and Vandewalle (2007) that Parareal is also a multigrid method.

22

2.2. The algorithm

AT or ot

....................

to ty to tN—2 tn—1 tn=T

Figure 2.1: Schematic of the Parareal time domain decomposition. Three levels of
temporal discretisation are shown: time slices (size AT'), coarse intervals (size §7'), and
fine intervals (size dt). Note how the discretisations must align with one another in such
a way that 0t < 6T < AT and (Ng/N)ot = (Ng/N)éT = AT, where Ng and Nx are
the total number of coarse and fine steps in [tg, T

forn=0,...,N — 1, and iteration number k£ = 0,1, 2,.... This system contains the
unknown solutions w, and their partial derivatives, which even if known, would be
computationally expensive to compute®. Crucially, however, the parallel shooting
method developed by Chartier and Philippe (1993) was limited to solving dissipative
ODEs, i.e. (2.1) with a right hand side whose largest eigenvalue is negative. The
invention of Parareal bridged the gap to solve problems with more general right hand
sides.

To solve (2.8) and iteratively calculate the values U¥ without the partial deriva-
tives, Parareal utilises two (deterministic) serial numerical integrators. These solvers
take an initial state U,’f at time t¢,, and propagate it, over a time slice of size AT, to
a terminal state U”

n

is denoted by Far: U — R% Tt returns a terminal solution state at very high

41 at time t,41. The fine solver, as described in Section 2.1.1,

numerical accuracy, at very high numerical cost, and is allowed to take many small
intermediate steps §t < AT to do this. The coarse solver, denoted similarly by
Gar: U — R?, returns a terminal state with much lower numerical accuracy and at
much lower computational cost than Fap, using (typically) larger intermediate time
steps 0t < 0T < AT (see Figure 2.1). The essential condition is that Gar must be
much cheaper to run than Far, i.e. Gar must be able to run serially across multiple
time slices to provide relatively cheap low accuracy states whilst the slower Far
solver is only permitted to be run in parallel over multiple time slices. This is a strict
requirement for Parareal, or else numerical speedup will not be realised (more on
this in Section 2.2.3).

Returning to (2.8), we can see that (2.8a) is known a priori for all k. To calculate
(2.8b), Lions et al. (2001) proposed approximating the first term in (2.8b) using
the fine solver Fa7(UF) and the second term by a coarse finite difference of the
derivative Gar(UF1) — Gar(UF) 7. Using the coarse approximation enables the

Tn fact, Bellen and Zennaro (1989) first suggested solving (2.7) using Steffensen’s method,
a variant of the Newton-Raphson method that does not require exact calculations of the partial
derivatives. The convergence of their algorithm was highly dependent on the accuracy of the initial
guess to the solution, i.e. {UY,..., U}, which is difficult to know a priori to simulation. As we
shall see shortly, Parareal provides a reliable method for calculating this initial guess (see (2.9b)).

"One could instead approximate the derivative by a fine finite difference]:AT(UT’fH) — fAT(U,If),
however, (2.8b) simply becomes the sequential calculation in (2.3) we are trying to avoid!

23

Chapter 2. The Parareal algorithm

fine computations in (2.8b) to be calculated in parallel, giving rise to the Parareal

algorithm.

Definition 2.1 (Parareal). For the two numerical flow maps Far and Gar described

above, the Parareal scheme is given by

Ul = u®, (2.9a)
UY. ., = Gar(UY), 0<n<N-1, (2.9b)
UMt = Gar(UF™) + Far(UY) - Gar(UF) 0<k<n<N-1. (2.9c)

Predictor Corrector

The result is that a coarse initial guess (2.9b) is improved with successive Parareal
iterations using the predictor-corrector (PC) update rule (2.9¢c). From this derivation,
it still may not be clear how Parareal solves (2.1) in parallel and so we shall now

describe how it works in practice.

2.2.2 How it works

Pseudocode for an implementation of Parareal is given in Algorithm 1 alongside a
graphical illustration of the first iteration in Figure 2.2. To begin (iteration k& = 0),
a coarse approximation (2.9b) to (2.1) is calculated by applying Gar sequentially to
the exact initial condition (2.9a) on a single processor. Following this, the fine solver
is used to propagate each approximation in (2.9b) in parallel, on N processors, to
obtain Far(U2), n =0,...,N — 1. These values are then ready to be used (during
iteration £ = 1) in the PC update (2.9¢c). Starting with the known exact solution
at t1, Gar is applied to ‘predict’ the state at ¢ and is then ‘corrected’ using the
residual between the fine and coarse states from the prior iteration. This prediction
and correction process is repeated sequentially up to time ty. The next step is to
check the stopping criteria, to determine whether Parareal has “converged” or not.

For a pre-defined stopping tolerance € > 0, the Parareal states U,’f are deemed to

have converged up to time ¢ if
U — U oo <& ¥n<I, (2.10)

where || - ||oo denotes the usual infinity norm. This criterion is standard for Parareal
(Gander and Hairer, 2008; Garrido et al., 2006; Maday and Turinici, 2002), however,
other choices are available. For example, one could instead take the relative (instead
of absolute) error, the average relative error between fine solutions over a time slice
(Samaddar et al., 2010, 2019), or measure the total energy of the system at each
iteration (Dai et al., 2013). Unconverged states, i.e. U¥ for n > I, are updated in
future iterations k > 1 by carrying out further parallel Fa7 runs on each U¥, followed
by an update using the PC (2.9¢). Once I = N, we say that Parareal has taken k

24

2.2. The algorithm

u(t) —]:AT(Un) —]:AT(US)

Gar(U0) Gar(UY /n

I I -

to 1 12 t3 2] ts 1t
Figure 2.2: First iteration of Parareal to numerically approximate the exact solution
(2.3) of a scalar ODE, obtained via a serial run of the fine solver (black line). The coarse
initial guess found using Gar (yellow lines and dots) is followed by the parallel runs of
Far from these guesses (blue lines). The coarse predictions from Gar (red lines) are
then used in the PC update (2.9¢) (red dots). Note that the blue and black trajectories
in the first interval will overlap, we distinguish them here for clarity.

(out of a maximum N) iterations to converge. By saying that Parareal converges in
k iterations, we do not necessarily mean that Parareal has recovered the fine solution
(2.3). In fact, we are slightly abusing terminology by instead meaning that Parareal
stops after k iterations—this convention is widely accepted and embedded within
the Parareal literature. Whilst Parareal should in fact recover the fine solution, it
will not recover it exactly. A more detailed discussion on what it means for the
Parareal solution to converge to the fine solution will be given in Section 2.2.4. In
its original formulation, Parareal iteratively improves solutions across all time steps,
regardless of whether they have converged or not. The version of Parareal described
here does not iterate over solutions which have already converged, avoiding the
waste of computational resources—this has no effect on the final number of iterations
(Elwasif et al., 2011; Garrido et al., 2006). This modification allows us to incorporate

stochastic sampling in Chapter 3 and the emulation processes in Chapter 5.

2.2.3 Computational complexity

Estimating computational complexity is an important stage in the analysis of any
algorithm (especially those designed to run in parallel), enabling one to compare
the performance of different algorithms that are designed to solve the same problem.
Complexity analysis usually involves calculating the number of FLOPS required to
solve a given problem, however, this is difficult for Parareal due to the freedom in
the choice of the solvers, number of time slices and time steps. Instead, we will
measure computational complexity in terms of wallclock time, parallel speedup and
parallel efficiency. We can then use these three quantities to directly compare the

performance of Parareal, SParareal, and GParareal.

25

Chapter 2. The Parareal algorithm

Algorithm 1: Parareal

Initialise: Set counters k = I = 0 and define U¥, U* and UF as the PC,
coarse, and fine solutions at the n' time step and k" iteration
respectively (recall UF = UF = Uf = u° VE).

%Calculate initial guess using Gar serially on processor Pj.

1 forn=1to N do

2 U? = Gar(U°_));
3 U = ﬁ,?;

4 end

5 for k=1to N do

#Propagate the PC states (from iteration k — 1) on each slice
by running Far in parallel on processors FPriq,...,Pn.
forn=14+1to N do
| O}t = Far(UEZY);
end
%Propagate the PC states (at iteration k) with Gar on any
processor. Then, correct this value using coarse and fine
states obtained during iteration k£ —1 (cannot be carried
out in parallel).
9 forn=171+1to N do

10 f]/f = gAT(U}]f—ﬁS
11 Uk =04+ U - U,
12 end

%Check if stopping criterion met, saving all solutions up to
time step ¢; before next iteration.

13 I= max |UF-~UF'w <eVi<n;
ne{l+1,...,.N}
%If tolerance is met for all time steps, algorithm stops.

14 if I = N then

15 ‘ return k, U*:
16 end
17 end

After k iterations in Parareal, the exact initial condition (u") will have been
propagated forward in time by Far k times. Therefore, the solution up to time ¢,
(at minimum) will have converged to the fine solver solution—this property will be
shown rigorously in Section 2.2.4. It should then be clear that if Parareal converges
in k = N iterations, the solution will be equal to the one found by calculating (2.3)
serially, at even higher computational cost. This means that to realise significant
parallel speedup, Parareal needs to converge in k < N iterations. We will now show

explicitly why this requirement is necessary.

Without loss of generality, assume running Far over any time slice [t,, tnt1],
n € {0,..., N—1}, takes wallclock time T'r seconds—denote time Tg similarly for Gar.
Therefore, calculating (2.3) using Far serially, takes approximately Tyeia1 = NTrx

26

2.2. The algorithm

103 Speedup | 3

=
o
—

._.
Q
o

Theoretical speedup
=
o
o

fun
S
N

=
e
w

— (oS |
1 2 4 8 16 32 64 128 256 512
k

Figure 2.3: Theoretical speedup (2.12) of Parareal against iteration number k for
problems with a varying ratio of coarse to fine solver wallclock runtimes (Tg/T'x) using
N = 512 processors. The dashed line separates regions in which speedup and no speedup
would be achieved.

seconds. Using Parareal, the total wallclock time (in the worst case, excluding any

serial overheads and communication time) can be approximated by

k

Toora ~ NTg + Tr+ (N —)T,
para g Z(}' (Z)g)

Iteration 0 =1

Iterations 1 to k&
k
:kT;+(k+1)(N—§)Tg. (2.11)
This estimate provides an approximate lower bound on the theoretical runtime of
Parareal. This can then be used to estimate the parallel speedup

L
2N

)Tg]_l. (2.12)

Teerial k
S. o A serial __ |:7+ E+1 -
para N (It Tr

Tpara

Using the parallel speedup, we can also quantify the parallel efficiency

Spara k\Tg]™
Epara ~ }ij :[k:+(k+1)(—2)Tﬁ . (2.13)

The efficiency provides a measure of how well the parallel computing resources
are utilised in a given simulation. Typically for Parareal, the number of iterations
required to converge to a solution is at least k£ > 2, meaning that the parallel efficiency
can never exceed 0.5 (assuming negligible 7g).

To maximise (2.12), both the number of iterations k and the ratio Tg /T should
be as small as possible. In Figure 2.3, we vary Tg/Tr to examine the effect on
theoretical speedup (2.12) for fixed N = 512 and varying k. We can see that if Ty

27

Chapter 2. The Parareal algorithm

Serial solve

Single
processor
oo

Parareal

P
v [l]Il] Coarse time (N — k)Tg

. Fine time T'r

Multiple
Pprocessors

P.
2 D Idle time
P
L0 1 | 2 | 3 | Tteration k
Wallclock | | g
time I -
Tpara Tserial —

Figure 2.4: Computational task scheduling during three iterations of Parareal compared
with a full serial integration. The coloured blocks represent the wallclock time any given
processor spends on a task. Coarse runs are shown in yellow, fine runs in blue, and any
idle time in white. The wallclock time is given on the axis at the bottom, indicating
both Tpara and Tyerial-

is negligible compared to T’r then the speedup behaves like N/k and is realised for
any k < N. However, once this ratio increases we see an increasing need for a lower
iteration count in order to achieve any speedup (the lower the better). If Ty /Tr is
too large then no speedup is realised for any k. In practice, however, there is no
way to a priori estimate k without actually carrying out the Parareal simulation.
In addition, there is a trade-off between k and the ratio Tg/Tr, as fast Gap solvers
(with sufficient accuracy to still guarantee convergence) typically cause Parareal to
require more iterations to converge, increasing k. In any case, we can see that the
best and worst cases are convergence in either £ = 1 or £ = NN iterations respectively.
The speedup relation in (2.12) is useful as it can be used to estimate speedup for
a range of k values using only the total number of processors available N and the

ratio Tg/Tr (which should be straightforward to estimate).

It is important to note that we ignore serial overheads (which include communi-
cation between processors and idle time) that inevitably cause discrepancies between
numerical results and the theoretical estimates in (2.11)—(2.13). An illustration of the
computational task scheduling during the first iteration of Parareal vs. a full serial
integration is given in Figure 2.4. This scheduling implementation does not account
for communication time and is clearly not optimal as a number of processors remain
idle when coarse runs are being carried out. It is therefore worth mentioning that
there has been work on optimising the standard scheduling process and redistributing
load imbalance in Parareal (Aubanel, 2011; Bolten et al., 2022; Elwasif et al., 2011),
leading to significant improvements in numerical speedup (almost double), however,
these can often depend highly on the HPC architecture available (Ruprecht, 2017).

28

2.2. The algorithm

2.2.4 Error bound analysis

Deriving rigorous error bounds for PinT methods is important in demonstrating that
numerical solutions obtained in parallel are meaningful, accurate, and that they can
be compared to one another (Gander et al., 2022). In this section, we will outline the
existing results that demonstrate how Parareal iteratively recovers the fine solution
(2.3). We will use some of the proof techniques mentioned here to derive error bounds
for both SParareal and GParareal in Chapters 4 and 5, respectively.

In the original work, Lions et al. (2001) derived an error bound for Parareal
applied to the scalar linear ODE problem, i.e. f(¢,u(t)) := Au in (2.1) for A € C.
They fixed the iteration number k, chose Far as the exact solver, and Gar as the
backward Euler (implicit RK1) method to find that

max [u(tn) = Uy| < CRATH,
where C}, is some constant that grows with k. This result shows that the Parareal
error at a fixed iteration k goes to zero as AT — 0 and behaves like an O(AT*+1)
method. It does not, however, provide any information about how the algorithm
behaves as k increases (due to the fact that C} increases with k) and sending
AT — 0 in Parareal is not really practical as this would require infinitely many time
slices/processors N.

Subsequent work generalised this result, showing that if Gar is a method of
order p (i.e. has local truncation error O(ATP*!)) then Parareal is a method of
order p(k + 1)) at iteration k (Bal, 2005; Bal and Maday, 2002). Noticing that AT
should be fixed and k allowed to increase, Gander and Vandewalle (2007) instead
derived error bounds for the scalar problem that have linear and superlinear rates of
convergence on unbounded and bounded time intervals, respectively (see Appendix A
for a brief recap on rates of convergence). With a little extra work, one can also relax
the assumption that Far is the exact solver, to derive a bound that holds when Far
is assumed to be a method of order ¢ (¢ > p)—refer to (Gander and Vandewalle,
2007, Sec. 4.5).

Following the analysis on linear problems, Gander and Hairer (2008) derived
the most general result so far. They used the generating function method (see
Appendix D.2) to derive a superlinear bound for (autonomous) nonlinear systems of
ODEs on bounded intervals. Our interest is in Theorem 2.2 (first derived by Gander
et al. (2022)), a tighter bound than the one provided in Gander and Hairer (2008).
As before, it is derived under the assumption that Far is the exact solver and Gar
is a method of order p which now satisfies a Lipschitz condition—these assumptions
will be described in full detail in Section 4.2 when we derive similar error bounds for

the SParareal scheme.

29

Chapter 2. The Parareal algorithm

Theorem 2.2 (Superlinear error bound for Parareal). Suppose the Parareal scheme
(2.9) satisfies Assumptions 4.1, 4.2, and 4.3. Then, the error of the solution to the

nonlinear ODE system (2.1) at iteration k and time t,, satisfies

tn) — UF|loo < DAF
u(tn) — Ul > ’

1) <€ +k
/=0

)Bf, 1<k<n<N,

with constants A = C1ATPY, B = Lg, and D = CoA.

Proof. See Appendix B. O

From this result it can be seen (in the constant A) that the accuracy of Parareal
improves with each iteration and that the error goes to zero when AT — 0, en-
capsulating the results of Lions et al. (2001) and Bal (2005). What is new is the
superlinear convergence of the error toward zero as k increases (due to the k in both
the binomial term and summation). Notice that, as expected, the error is exactly
zero when k = n, i.e. after k propagations of Far, the exact solution is recovered at
time step tx. Convergence results such as Theorem 2.2 are beginning to appear for a
number of Parareal variants using the generating function methodology. Examples
include, Parareal for systems of ODEs that admit low-rank approximations (Carrel
et al., 2022) and Parareal with multiple levels/time averaging (Rosemeier et al.,
2022). In the latter case, bounds were also derived in the case where Far is no longer
assumed to be the exact solver, but instead a method order g > p, see (Rosemeier
et al., 2022, Theorem 3.3).

2.2.5 Choice of numerical solvers

As we saw in Section 2.2.3, the choice of solvers Far and Gar has a profound impact
on the realisable parallel speedup from Parareal due to the trade-off between cost
and accuracy (recall Figure 2.3). What follows is an outline of things to consider

when choosing the solvers.

The fine solver Far

Typically, there is not much freedom in the choice of the fine solver Far because
the requirements for Far (time step 0t, order of accuracy ¢ etc.) are determined
by properties of the IVP being solved and by the needs of the user. For example,
stiff problems may require the use of an adaptive Far solver, chaotic problems may
require a very small d¢, and spatially-dependent PDEs (if using an explicit solver for
Far) may need to satisfy a Courant-Friedrichs-Lewy condition. Furthermore, the
user may instead wish to preserve certain features of the system by using a geometric
integrator. The only requirement in any of these cases is that Far be sufficiently

computationally expensive, i.e. Tr be sufficiently large, that Far cannot be run

30

2.2. The algorithm

over [tg, T] sequentially in feasible time. If it could, then there would be no need to
use Parareal in the first place! In our numerical simulations, we will make use of
high-order explicit RK methods.

The coarse solver Gar

On the other hand, there is much more freedom in the choice of the coarse solver
Gar, even though a number of conditions must be satisfied for Parareal to remain
stable and therefore converge to the fine solution. As discussed before, Gar must
be chosen such that it is fast compared to the fine solver (i.e. Ty < T'r) but also
accurate enough that it provides reasonable approximations to the solutions—criteria
on how accurate Gar needs to be can be found in (Maday and Mula, 2020, Sec. 2.2).
An additional factor to consider is the numerical stability of Parareal, which has
been shown to depend explicitly on the stability of both Far and Gar (Bal, 2005;
Farhat and Chandesris, 2003; Ruprecht, 2014; Southworth, 2019; Staff and Rgnquist,
2005). The choice of Far should automatically be stable for solving the IVP of
interest (otherwise an alternative method should be chosen!) and so one must be
careful to select a stable coarse solver. It can seem natural to therefore choose an
implicit solver for Gar, as they are much more stable than explicit solvers, however,
they are much more costly to implement (increasing the ratio Tg/Tr).

Without going into the technical details for satisfying the conditions of stability
and accuracy®, we now discuss some possible choices for Gap. This choice will
depend heavily on the IVP in question but should not really affect the accuracy of
the final solution generated by Parareal as it should still recover the fine solution.
The first option is to choose Gar to be the same solver as Far but with a coarser
temporal resolution, i.e. larger time steps 67 > dt. It should be noted, however,
that this may not be feasible for many IVPs where the size of §71 is limited by the
numerical stability of Fap—which may depend on a spatial discretisation (Baffico
et al., 2002; Baudron et al., 2014a; Gander and Hairer, 2008). Alternatively, Gar can
be a different method than Far, one that has a lower order of numerical accuracy
p < ¢ (Farhat and Chandesris, 2003; Samaddar et al., 2010; Trindade and Pereira,
2006). For more complex IVPs, work has shown that Gap can be chosen with coarser
time steps and/or lower numerical accuracy to solve simplified model equations that
have reduced physics or, perhaps, approximate the dynamics of the IVP (compared
to Far) (Engblom, 2009; Grigori et al., 2021; Legoll et al., 2022; Meng et al., 2020).
For spatially-dependent PDEs, Gar can resolve the IVP using a coarser spatial grid
(Clarke et al., 2020; Fischer et al., 2005; Ruprecht, 2014; Samaddar et al., 2010).

There have also been attempts to “learn” coarse solvers using different types of

8Tt is very difficult to translate the mathematical conditions required for the stability and
accuracy of Far and Gar into a practical method for choosing Far and Gar for a given IVP. In
most applications of Parareal, choices for the solvers (mostly always Gar) have been guided by
intuition or trial and error.

31

Chapter 2. The Parareal algorithm

machine learning models—these will be discussed in detail in Section 5.1. Some of
the aforementioned techniques have also been used in conjunction with one another.

All in all, one must carefully choose Gar, bearing in mind that a more numerically
accurate/stable coarse solver may reduce the number of iterations in Parareal but
will increase the ratio Tg/Tr, leading to possible speedup degradation. For example,
an implicit RK method with a large time step will be more numerically stable than
its explicit RK counterpart, however, it will incur a much greater numerical cost due
to the fact it has to solve a (typically nonlinear) system at each time step. This type
of trade-off has led to a demand for accurate but fast coarse solvers for Parareal
and has been the subject of much discussion (Nielsen, 2012). In our simulations, we
will make use of low-order explicit/implicit methods for Gar which will be cheap
compared to the selected fine solver.

Choosing an appropriate coarse solver is one of the most important aspects of
running Parareal. It is the key to realising good numerical speedup and so a lot
of effort has been dedicated to testing different approaches. Our goal is not to
implement a new type of coarse solver but rather use probabilistic methods to try to
harness the existing coarse (and fine) solution information obtained throughout a
Parareal simulation. In Chapter 3, we sample from probability distributions with
a variance proportional to the residual between coarse solves at different input
locations (which is usually large during early iterations). The idea is that SParareal
can take samples from these distributions and more efficiently explore the solution
space, ideally converging to the exact solution values faster than deterministically.
In Chapter 5, we use a GP emulator to capture variability in the residual between
the fine and coarse solvers (i.e. we model Far — Gar), training the emulator on
known fine and coarse information. We showcase the effectiveness of this approach
by demonstrating that GParareal can converge to solutions in cases where the coarse
solver is too poor (i.e. of insufficient accuracy) for Parareal. These efforts should
help extract further numerical speedup and widen the pool of possible choices for

Gar when running a Parareal-type simulation.

2.2.6 Numerical experiment: Arenstorf Orbit

In this section, we use Parareal to solve a system of ODEs that models a special
case of the three-body problem—a similar experiment was presented in Gander and
Hairer (2008). Suppose that a large body (e.g. the Earth) is orbited by a smaller,
but still large, body (e.g. the Moon) in the two-dimensional plane. We consider the
motion of an even smaller object (e.g. a satellite) between the two larger bodies (its
mass is negligible compared to these bodies). In Figure 2.5, we can see that the
Earth is fixed at the origin whilst the Moon, initially located at (1,0), orbits the
Earth (dashed line). Arenstorf (1963) discovered equations that would allow for a
(single) stable periodic orbit of the small object between the Earth and Moon due to

32

2.2. The algorithm

gravity (solid black line) over the period t € [0,17.06521656015796]. Coupled with
initial conditions w(0) = (0.994, 0,0, —2.00158510637908)T, the system is given by

du
dt — ug,
d’UJQ
—, = U4,
dt
dug b(uy + a) a(uy —b) (2.14)
E:u1+2u4— 2 .2)32 D2 + u2)e
((u1 +a)? + u3) ((u1 = b)? + u3)
% e — Y — bus B aus
a7 T (At a2+ ud) (g — b)2 + u2)

where u1 and ue are the positions of the small object at time ¢ and ug and w4 are the
respective velocities. The constant a = 0.012277471 is the relative mass of the Moon
compared to the combined mass of the Moon and Earth, while b = 1 — a is the same
but for Earth. This system is very sensitive to small changes in initial conditions and
so accuracy (hence a small time step) is of paramount importance when integrating
this system forward in time.

For this experiment, we select solvers Gar = RK2 and Far = RK8 with Ng =
(T —t0)/0T = 1000 and Nz = (T —t()/6t = 2 x 10° steps, respectively. We integrate
over one orbital period using N = 40 time slices and a stopping tolerance ¢ = 1076.

We observe a good match between the solutions simulated by Parareal (after reaching

1.5
1+ / 4
1+ ‘ ;
0.5 { *
1t J
E 0r ‘ Fine % Parar(‘,al‘
1— T T r
0 <° /\W
-t 1t :]
‘ Fine % Parareal -2% . . . *
. ! I 0 5 10 15
-1.5 ;
-1.5 -1 -0.5 0 0.5 1 1.5

(b)
(a)

Figure 2.5: Numerical results obtained solving the Arenstorf system (2.14) over one
orbital period using Parareal. (a) The position of the satellite, between the Moon (black
dot) and Earth (blue dot), is plotted using the fine solver (solid black) and Parareal (red
stars) in the (u1,us)-plane (i.e. the (z,y)-plane). Also shown is the orbit of the Moon
around the Earth (dashed black) and the direction of motion of both the satellite and
the Moon (arrows). (b) The velocity of the satellite in the horizontal (us) and vertical
(u4) directions plotted against time using the fine solver (solid black) and Parareal (red
stars). Note that Parareal solutions are plotted only at times ¢ for clarity.

33

Chapter 2. The Parareal algorithm

105 = Uil

(a) (b)

Figure 2.6: (a) Maximum absolute errors (2.10) between successive Parareal solutions
(UF and UF~1) over time, plotted at each iteration k until tolerance ¢ = 107 is met.
(b) Maximum absolute errors between the Parareal solution U and the fine solution
U,, at each iteration k, plotted over time.

the stopping tolerance) and the solution obtained by running the fine solver serially.
In Figure 2.6(a), we plot how the difference between Parareal solutions iteratively
reach the stopping criterion (2.10), stopping once below ¢ for all time steps. After
k = 3 iterations, we observe that the solution in the first three time slices have
reached the stopping tolerance. Following the fourth iteration, however, seven time
slices converge. What this means is that Parareal is avoiding having to run Far seven
times serially, instead only running Far once (during the fourth iteration). The key
to observing faster speedup with Parareal is if it can reach the stopping tolerance
in more than one time slice each iteration (the more time slices that converge, the
better). In a similar vein, we can show how close the Parareal solution is to the
(serially obtained) fine solution at each iteration in Figure 2.6(b). As expected, the
accuracy of the Parareal solution is poor after just one iteration—of order O(10?)
from the fine solution. The error improves drastically within a few iterations, reaching
an accuracy of O(1077) after the stopping tolerance is met at iteration k& = 6. These
results showcase how Parareal can locate the correct solution, even from a very poor

initial guess.

Table 2.1: Numerical wallclock time, speedup, and efficiency results obtained solving
the Arenstorf system (2.14) using Parareal—refer back to Section 2.2.3 for notation. The
results in brackets are the corresponding theoretical results calculated using (2.11)—(2.13).
All timings are measured in seconds.

‘ N ‘ k‘ TQ ‘ T]—' ‘ T;erial ‘ Tpara ‘ Spara ‘ Epara ‘

‘ 40 ‘ 6 ‘ 2.92E-2 ‘ 85.07 ‘ 3.40E3 ‘ 522.14 (517.97) ‘ 6.52 (6.57) ‘ 0.16 (0.16) ‘

34

2.3. Variants and related work

We do, however, need to calculate runtimes to truly demonstrate the power of
Parareal. To do this, we increase Nx to 2 x 108, thereby increasing the cost of
running Far relative to Gar (so that Tg/T is small and we can realise speedup)?.
The numerical results in Table 2.1 display the runtimes of the coarse and fine solvers
over a time slice, the runtime of the serial simulation, the Parareal runtime, and the
corresponding speedup/efficiency realised. We see that Parareal takes k = 6 (out of a
maximum N = 40) iterations to converge, yielding a wallclock runtime 6.52x faster
than what the serial fine solver can achieve. The iterative nature of Parareal, however,
leads to very poor parallel efficiency—indicating that Parareal does not utilise its
parallel resources very well. Overall, the numerical results match the theoretical
estimates calculated in (2.11)—(2.13) nicely, with slight discrepancies coming from
some serial overheads/parallel communication ignored by the theory. These brief
results have given us an insight into how Parareal works in practice—many more

simulations will be carried out using Parareal in later chapters.

2.3 Variants and related work

Now that we have discussed Parareal in detail, we provide a brief overview of some of
the different variants that have emerged since its inception to tackle various challenges
the standard implementation suffers from when faced with solving particular types of
IVP. Note that the following variants are not necessarily related to the probabilistic
PinT methods we propose later on and so we save a full exposition of those that are
related to sampling- and learning-based methods until Chapters 3 and 5, respectively.

Parareal has been shown to work very well for diffusive (e.g. parabolic-type) IVPs,
however, it has been known to repeatedly struggle with non-diffusive (e.g. hyperbolic
or advection-dominated) IVPs (Bal, 2005; Gander, 2008; Staff and Rgnquist, 2005).
Non-diffusive IVPs occur frequently throughout the physical sciences, most notably
perhaps in fluid dynamics, where differential operators contain imaginary eigenvalues
and therefore solutions exhibit wave-type behaviour. By writing Parareal in iteration
matrix form, Ruprecht (2018) investigates its wave propagation characteristics, finding
that instability (i.e. slow or non-convergence) arises due to phase errors generated
by the coarse solver and amplification factors in higher wave numbers. lizuka and
Ono (2018) report similar findings through numerical investigation and show that
using coarse solvers with the same phase accuracy as the fine solver is one way to
avoid deteriorating performance, however, one must note that using such solvers is
typically more computationally expensive. One variant that has been shown to work

well on non-diffusive IVPs is Krylov-enhanced Parareal (Gander and Petcu, 2008;

9We excessively increase Nz in experiments throughout this thesis to increase T and generate
meaningful speedup results that are largely absent of communication and other serial costs. Clearly
this would not be done in practice but is necessary for some of the low-dimensional systems tested
here.

35

Chapter 2. The Parareal algorithm

Ruprecht and Krause, 2012), which improves the accuracy of the coarse solver using
Krylov subspaces built from Parareal solution information. In Chapter 5 we will
discuss this variant at length in the context of learning-based methods. Also worth
mentioning is the variant developed by Buvoli and Minion (2023) in which they try
to stabilise Parareal by slightly re-formulating the IVP (splitting it into linear and
nonlinear parts) and using exponential RK methods as coarse/fine solvers. Ensuring
PinT algorithms can handle non-diffusive IVPs is of great importance given that
they arise so frequently in mathematical modelling, e.g. numerical weather prediction
and plasma physics.

When solving certain IVPs (e.g. Hamiltonian systems) we may also wish to
preserve invariant dynamics or conserve geometric/physical quantities of the system
(e.g. energy, angular momentum) over long integration times. Bal and Wu (2008)
and Dai et al. (2013) show that a blind application of Parareal using symplectic
coarse/fine integrators (that serially conserve such properties on their own) does
not work. This is because the summation of symplectic functions in the PC does
not preserve symplecticity and so a slightly more involved method of composing
the symplectic functions in the PC is required. Gander and Hairer (2014) analyse
this problem further, deriving long-time error estimates for Parareal applied to
Hamiltonian systems.

There are far too many Parareal variants to cover entirely in this section, however,
we mention a few more for completeness'?. Some variants tackle time-scale separation
(Haut and Wingate, 2014; Legoll et al., 2020; Rosemeier et al., 2022), time periodicity
(Gander et al., 2013b), and adaptive slicing of the time interval (to avoid solution
blow up) in longtime simulations of molecular dynamics (Legoll et al., 2022). Others
have emerged to to deal with more specific IVPs including: Parareal for low-rank
systems (Carrel et al., 2022), PDE constrained optimisation (Gander et al., 2020),
and data assimilation (Bhatt et al., 2022).

2.4 Summary

In this chapter, we formulated the problem of interest and stated our objective
of finding a high accuracy numerical solution to the IVP (2.1). Typically, such
a solution (2.3) is obtained by using an expensive (serial) time stepping method
known as the fine solver Far. We derived Parareal from first principles, showing
how it makes use of Far as well as a cheaper, lower accuracy coarse solver Gar to
integrate the IVP in parallel using a PC update rule. Its iterative nature means
that convergence occurs in k iterations, yielding a maximal speedup of N/k (that we
hope to improve upon). Whilst Far can be chosen (almost) freely, we caution that

Gar must be chosen to be computationally inexpensive (compared to Far) but still

'9A more complete list can be found at http://parallel-in-time.org/references/index.html.

36

http://parallel-in-time.org/references/index.html

2.4. Summary

numerically accurate enough to roughly approximate the IVP solution. Theoretical
computational complexity estimates were provided and will be repeatedly referred
to when we need to analyse and compare our own probabilistic PinT methods with
Parareal. In addition, we provided a brief insight into the kind of error bound
analysis that we will need to carry out to demonstrate that our algorithms locate
accurate solutions. The demonstration of how Parareal works in practice on a small
test problem is given to highlight its iterative nature (and therefore show when it
stops), how we measure numerical accuracy (against the Fap solutions), and what
kind of numerical speedup it can generate. The framework of this chapter will help

set the stage for the probabilistic PinT algorithms we are about to present.

37

Chapter 3

SParareal I: a sampling-based

time-parallel algorithm

Overview

In this chapter we propose SParareal, a sampling-based time-parallel algorithm that
can solve IVPs (2.1) using probability distributions constructed from known fine
and coarse solution data. The idea is to sample candidate solutions from these
distributions in each time slice, propagate each one on its own processor using the
fine solver, and select an optimal state that will provide us with a “better” correction
in the Parareal PC update. The intuition is that with sufficiently many samples,
better corrections will lead to a reduction in the number of iterations taken until
convergence, yielding increased parallel speedup.

We begin in Section 3.1 by explaining the intuition behind SParareal and dis-
cussing how the first PinT algorithm and a sampling-based PN ODE solver inspired
its development. In Section 3.2, we introduce SParareal, explaining how it works, how
the probability distributions are constructed and how the sampling and propagation
process is carried out. We then elucidate how a variety of different “sampling rules”
can be flexibly interchanged to carry out the sampling depending on whether any
information is known about the solution to the IVP a priori to simulation. This
is followed by remarks on computational complexity, where we derive expressions
that show the wallclock time of an SParareal iteration is approximately the same
as one in Parareal. We also discuss how an increasing number of samples reduces
the number of iterations required until convergence. To conclude, we remark on the
convergence of the SParareal solutions to the exact fine solution (2.3)—which will be
analysed fully in Chapter 4.

In Section 3.3, we conduct numerical experiments that showcase the performance
of SParareal using different sampling rules and varying numbers of random samples.

Findings are presented for three nonlinear ODE systems (additional experiments are

38

3.1. Motivation and background

provided in Appendix C), demonstrating that for sufficiently many samples, SParareal
almost certainly converges in fewer iterations than Parareal and generates (stochastic)
solutions of comparable numerical accuracy. Results show that performance is
improved by generating correlated, as opposed to uncorrelated, random samples. In
Section 3.4, we discuss the advantages and disadvantages of SParareal, highlighting

what can be improved and how this lead to the development of GParareal in Chapter 5.

3.1 Motivation and background

Throughout this chapter, we seek the same high resolution numerical solutions to (2.1)
as given by (2.3). The iteratively improved solutions from SParareal will be denoted
using the same notation as Parareal, i.e. as U (where U} = Uy = u® Vk > 0). The
IVP setup, the solvers, and the notation will be the same as Parareal except where

otherwise defined.

3.1.1 Our approach

As we saw in Section 2.2.3, the major obstacle preventing further parallel speedup
gains in (2.12) is the choice of Gar and so focus is often directed toward locating
faster, more accurate, coarse solvers to achieve reductions in both k and Tg. Finding
better coarse solvers is notoriously difficult and in many applications there may not be
any alternative choices for Gar due to limitations on step sizes or required numerical
accuracy. In the PC (2.9c¢), the solution states Uj{’ are updated deterministically using
a correction term based on a single fine and coarse solution from the previous iteration
k — 1. Our aim is to improve the accuracy of this correction, not by modifying
Gar, but by making use of the existing fine and coarse solution data to from prior
iterations. We do this by using the data to construct probability distributions over
regions of state space where we believe the exact states U,, may exist. Sampling
from these distributions should allow us to more efficiently explore the solution space
and locate the exact states in faster wallclock time.

The main idea is that, instead of using a single deterministically calculated

correction term to update the PC solution, we sample M candidate initial values

k
nlo e

probability distributions defined by a pre-specified sampling rule with given marginal

a . 70‘2 - at each unconverged time slice ¢,,. These samples are drawn from
means and standard deviations (see Section 3.2.2). These parameters are defined
using the most recently obtained fine and coarse solution information so that we
ensure samples are drawn in the neighbourhood of the current PC solution U¥. All
of the sampled initial values are then propagated in parallel using Far. Given a
sufficient number of samples is taken, one sample will be closer (in the Euclidean
sense) to the exact root U, that equation (2.9¢) is converging toward. To try and

locate the best sample at each t,,, we select an “optimal” sample &% by identifying

39

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

which sequence of samples generate the most continuous trajectory, at the fine
resolution, in state space across [to, ty]. These optimal samples are then subsequently
propagated (rapidly) forward in time using Gar and then used directly in the new
PC update:

UM = Gar(UE™Y) + Far(ah) — Gar(ak), 1<k<n<N.

n

prediction correction

The intuition is that for increasing values of M, the stochastically generated set
of initial values should be closer to the exact states U, than those found purely
deterministically and therefore converge in fewer iterations.

For example, consider a scenario in which the PC in Parareal is provided initial
values V() yielding convergence in k iterations and generating the sequence of
solutions {V(O), v V(k)}. Instead of starting with V(9 suppose we sample
initial values from a probability distribution and choose some “better” starting point
which is close to, say, V®) for some i € {1,...,k — 1}. Then the sequence generated
by the PC would instead be approximately {V® V+D v (#)} converging in
k — i+ 1 iterations. Therefore, given a fixed number of samples M, SParareal should
converge in fewer than k iterations with some non-zero probability, returning a
stochastic solution to the IVP. Stochastic methods, that generate different solutions
after each independent simulation, are useful in that they are able to explore the
solution space more than deterministic methods, potentially revealing unexpected
behaviour in the dynamical system. In addition, if we can obtain such solutions
in faster wallclock time than Parareal then one can launch additional simulations
obtaining a distribution of stochastic trajectories over the solution (something we

will show later).

3.1.2 Related work

The idea of propagating multiple initial values in each time slice forward in time (in
parallel) is not new. In the first known work proposing a PinT method, Nievergelt
(1964) proposed solving IVPs in parallel by choosing the M (sampled) initial values,
discussed above, deterministically. For a scalar IVP, he suggests choosing M initial
values Ugm in each time slice ¢, close to the exact (unknown) solution U, and
carrying out M (N — 1) + 1 propagations using Far in parallel—see Figure 3.1 for
an illustration. The M values are chosen close to some initial guess U?, e.g. a coarse
initial guess as in Parareal. The method for determining the solution across [tg, T
from this ensemble of trajectories is to (sequentially) combine two of the samples in

each time slice [ty, t,+1] using an interpolation coefficient, i.e.
Upi1 = rFar(Ug) + (1= 1) Far(Up i), (3.1)

40

3.1. Motivation and background

Far(U,) o— Far(US

7,m)

o Gar(UY) e U,

u0 ¢

>
»

to t1 to ts3 ty ts t

Figure 3.1: Ilustration of Nievergelt’s method for numerically approximating the
exact solution (2.3) of a scalar ODE, obtained via a serial run of the fine solver (black
line). A number of candidate initial values Ug’m (blue dots), selected close to a coarse
initial guess U? calculated using Gar (yellow dots and lines), are propagated forward in
time using Far in parallel (blue dots and lines). These trajectories are used to directly
calculate a solution to the IVP using (3.1) (red dots).

where r = (UA — U27m+1) / (U%m — Ug,m—i—l) and m is chosen such that U! €
[Ug}m,Ug,m +1)- This direct (non-iterative) method of solving in parallel works
well for scalar linear ODESs, however, suffers from interpolation errors for nonlinear
problems, does not generalise for systems of ODEs, and questions remain over how
to efficiently (or correctly) choose the M initial values. Nievergelt knew that even
though his algorithm was not a practical method for solving IVPs, it would lay
the foundations for better methods in the future that have now become known as
PinT methods'. With SParareal, we address the problem of not being able to solve
nonlinear systems of ODEs by using the existing architecture of Parareal and tackle
the issue of how to correctly and efficiently choose the M initial values by using the
probability distributions described in the previous section.

The idea of sampling the M initial values from probability distributions stems
from the sampling-based ODE solvers (also known as perturbative ODE solvers)
developed in the field of PN. Conrad et al. (2017) developed a (sequential) sampling-
based ODE solver in which solution states generated by a numerical integrator (such
as Far) are perturbed with Gaussian noise to try to quantify numerical uncertainty
in the solution to the ODE. Traditionally, one integrates (2.1) forward in time
by applying Far sequentially, just as in (2.3). In sampling-based solvers, Far is

assumed to be a one-step numerical method, i.e. 6t = AT, with local truncation

'In his conclusions, Nievergelt summed this up best himself by saying that: “The integration
methods introduced in this paper are to be regarded as tentative examples of a much wider class of
numerical procedures in which parallelism is introduced at the expense of redundancy of computation.
As such, their merits lie not so much in their usefulness as numerical algorithms as in their potential
as prototypes of better methods based on the same principles. It is believed that more general
and improved versions of these methods will be of great importance when computers capable of
executing many computations in parallel become available.”

41

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

— n+1 :]:AT(Un>

*— Un+1 =]:AT<Un) + 571, &%
¢

: : >
I I -

to t1 to t3 ty ts t

Figure 3.2: An illustration of the sampling-based ODE solver proposed by Conrad
et al. (2017). The deterministic solution trajectory (black line) obtained using Far is
shown alongside one realisation of the sampling-based trajectory (blue lines) obtained
using (3.2).

error of order ¢ + 1 (¢ > 1). This means that U,, = Far(U,—_1) is accurate with
respect to the true solution wu(t,) up to O(AT?). Conrad et al. exploit the fact that
we are free to select any point within the small “ball” centred on U, radius CATI+!
(C constant) to propagate forward in time to t,41. They do this by adding zero-
mean, suitably scaled (second moment scaled O(AT?4t1)) independent identically
distributed (i.i.d.) Gaussian perturbations &, after each propagation using Far,

proposing the numerical scheme
Upi1 = Far(U,) +&,, n=0,...,N—1. (3.2)

The idea is that an approximation to the numerical error, i.e. &,, is added to the
numerical solution after each time step, thus generating a sequence of random variables
that captures numerical uncertainty in the solution—see Figure 3.2. Upon multiple
simulations of the algorithm, one then obtains a non-Gaussian distribution of solutions
rather than a single deterministic trajectory—recall Figure 1.4(a). Whilst this
distribution is unstructured and analytically intractable to analyse post-simulation
(at present), it does have the power to reveal qualitative features of the system being
solved, e.g. stable or unstable manifolds, that “uncertainty-unaware” deterministic
solvers cannot. Although we do not directly use random perturbations in SParareal
to quantify numerical uncertainty?, we do use them to explore the solution space
and try to accelerate convergence of the deterministic Parareal scheme.

The key takeaway from the work of Conrad et al. (2017) is that the mean-

square error of the solutions (3.2) are accurate with respect to the global truncation

2In Section 3.3 we will, however, see that upon multiple simulations of SParareal, one can
obtain a distribution of solutions to the IVP. We do not claim that such a distribution captures any
quantitative numerical uncertainty from the solvers but rather it can provide a more qualitative
understanding of how solutions to the IVP behave.

42

3.2. The algorithm

error of Far (assuming perturbations have an appropriate bound on their second
moments). This means that the solutions (3.2) are of the same order of accuracy as
those obtained deterministically using (2.3). Note that the stochastic trajectories
illustrated in Figure 3.2 were purposely drawn far away from the deterministic
trajectory to emphasise their stochastic nature only. This will be a feature that
SParareal mimics with respect to the solutions from Parareal (i.e. they will be of
the same order of accuracy). In follow up work, Lie et al. (2019, 2022) extend the
theoretical analysis of the solution errors to allow for more general, e.g. non Gaussian,
non centred, non i.i.d., perturbations. The underlying assumptions made about the
perturbations by Lie et al. will be very useful when we derive mean-square error
bounds for the SParareal solutions in Chapter 4. One downside of these solvers is
that if Far is a solver that preserves some geometric property of the IVP being
solved, e.g. energy, then the random perturbations don’t preserve these properties. In
response to this problem, Abdulle and Garegnani (2020) developed a sampling-based
solver in which they randomise the time steps rather than the solutions to preserve
such geometric properties—it would be interesting to see if this is compatible with
PinT methods. For an extended discussion on sampling-based ODE solvers refer to
Hennig et al. (2022).

Finally, for completeness we must note the Parareal variants that have been
developed to solve SDEs, with applications mainly focused on molecular dynamics
(Baffico et al., 2002; Bal, 2006; Engblom, 2009; Legoll et al., 2020, 2022). These
variants typically use a fine SDE solver to integrate the SDE to high resolution and
a coarse solver that uses either a larger time step (which is often difficult to do in
molecular dynamics simulations) or solves reduced (deterministic) model equations.
Either way, the Parareal scheme requires some form of adaptation so that these
solutions can be combined in a PC-type scheme. When applying such variants to
SDEs, the solutions obtained are inherently stochastic due to the nature of the SDE
and, to an extent, the solvers. With SParareal, the IVP is strictly deterministic and
the SParareal scheme itself is what introduces randomness that generates stochastic
solutions to the (deterministic) IVP. One would need to think carefully about how

to apply SParareal to SDEs.

3.2 The algorithm

We are now ready to introduce SParareal and explain how it works.

3.2.1 How it works

Following initialisation, the first iteration (k = 1) of SParareal is the same as the first
in Parareal—refer to pseudocode in Algorithm 2. This is because the coarse and fine

solution information generated up to k = 1 is required to construct the probability

43

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

distributions for sampling. After the convergence check, we assume (for the purposes
of explaining the stochastic iterations) that only the first time slice [to, 1] converges
during k& = 1, leaving N — 1 unconverged time slices. At this point we know the most
up-to-date PC solutions U} ¥n € {1,..., N} and the stochastic iterations can begin
(henceforth k = 2).

At any unconverged ¢, (n > 1), we sample M vectors of initial values, denoted
a,";;,% for m = 1,..., M. The first sample is fixed as the PC solution state U1,
to ensure that SParareal and Parareal are equivalent when M = 1. The other
M — 1 initial values are sampled from a pre-specified d-dimensional probability
distribution ®%~! with finite marginal means pf=t = (k=1 .. ,uflgl)T, marginal
standard deviations 0,]3_1 = (051_1, el aﬁd_l)T, and correlation structure given by
the matrix Rfl_l € R%*?_ These quantities depend upon the solution information
available up to iteration k¥ — 1, i.e. a combination of Uff‘l, Far(UF1), QAT(Uff_l)
and Gar(UF~2), see Section 3.2.2. The correlation matrix RE~! is introduced to
take into account any dependence between components of the ODE system (lines 2-7,
Algorithm 2). For example, in spatially discretised PDE problems, a system of ODEs
govern the dynamics at the spatial locations and so one would expect that solutions
of ODEs “next to one another” would be highly correlated and those “further away”
would be less correlated. The elements of RE™!, for k > 3, are defined using the

Pearson correlation coefficient

o1 Yo () = 20) @) — 39
BRRVO ST CIRE GV ST LI I

9y Z’] 6 {]‘""7d}? (3'3)

M
20 = Far(eh=2)@, 590 =—3 4,

7 M m=1
and fAT(afL:im)(i) denotes the ith element of fAT(aﬁ:im). The coefficients pﬁ:}

in (3.3) are the estimated pairwise correlation coefficients of the M d-dimensional fine

resolution propagations of the sampled initial values at t,, from the previous iteration,

i.e.]:AT(QI:L:%J)? . ,]:AT(afl:iM). Note that other types of linear correlation

k—2

n—1,m

we set Rfl_l =1, for k = 2, i.e. we sample from a multivariate distribution with

coefficient can be chosen. Since each Far(a) is not available at iteration k = 2,

uncorrelated components.

Following this, the sampling and subsequent propagation using Far can begin in
parallel (lines 8-19). Given the solution between [to,¢;] has converged, Far will run
from the converged initial value at ¢, with sampling starting from t5 onward (see
Figure 3.3). All sampled initial values are then propagated forward in parallel using

Far, requiring at least M (N — 2) + 1 processors (M samples on N — 2 unconverged

44

3.2. The algorithm

Algorithm 2: SParareal

1

N O otk W

10
11
12
13
14
15
16
17
18
19

20
21

22

23
24

25
26
27

28
29
30
31

32

33
34
35
36

Initialise: Run Parareal (Algorithm 1) until the end of iteration k£ = 1.
for k=2 to N do
%Calculate correlations if d > 1, recall (3.3).
RF-1 =1, Vn;
if kK > 3 then
forn=71+1to N—-1do
Calculate RE~! using Far(af=2), ..., Far(«

)

k—2)
n—1,M/’
end

end

%Sampling and propagation. Lines 8-10 must run in parallel
on Pl, ey PM(N—l—I)—i—l .

ﬁf;ll = }"AT(U}“_I) ; %propagate converged value at iy on P

forn=714+1to N—-1do

for m=1to M do

if m =1 then

a]f;ll =Ur'; Yfirst ‘sample’ is fixed to PC value

ﬁ—n+1’1 = fAT(aijll) : %store propagated values

else

af;;% ~ @fl_l ; %sample initial value randomly

l:jnJrl,m =]:AT(QZZ,_W%);

end

end
end
%Sequentially select most continuous fine trajectory.
forn=14+1to N—-1do

J = argmin ||aff]1 —UF1o;

je{1,... .M}

=, %store optimal initial value

Ukl = iﬁH4A]; %store most optimal fine trajectories
end
%Run Gar from the optimal samples (can run in parallel).
forn=714+1to N -1do
| Ur = Gar(al™);
end
%Predict and correct the initial values.
forn=171+1to N do

Uk = Gar(UE_));

Ut = Of + O - U
end
%Check whether the stopping criterion is met.

I= max |UF-U"w <eVi<n
ne{I+1,..,N}

if I = N then
‘ return k, U* ; %if tolerance met for all time steps, stop.
end

end

45

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

u(t
() — Far(U,) o—— Far(a,) Sampling rule:

— fAT(US) Gar (64711) ol o~ ®L(ul by

Nm

19979721

to t to t3 ty t

Figure 3.3: An illustration of the sampling and propagation process within SParareal
following iteration k = 1. The fine solution is given in black, the k¥ = 0 fine solutions
in blue, the k = 1 coarse solutions in red, and the & = 1 PC solutions as red dots.
With M = 5, four samples al . (green dots) are taken at t5 and t3 from distributions
with means U3 and U3, and some finite standard deviations respectively. These values,
along with U} and U} themselves, are propagated in parallel forward in time using Far
(green lines). The optimally chosen samples &7 (refer to text for how these are chosen)
are then propagated forward in time using Gar (yellow lines).

time slices plus running Far once in [t1, t2]).

Of the M sampled initial values at each ¢, (n > 1), only one is retained (denoted
by &F~1) chosen such that it minimises the Euclidean distance between the fine
solution and the sampled values (lines 20-24). To do this, start from the converged

initial values at to given by the fine solver: fAT(Ulkfl). Calculate the Euclidean

distance between Far(UF™!) and each of the M samples ab7!,... 70‘57\/1[' The
sample minimising this distance is chosen as dgfl. Repeat for later t,,, minimising
the distance between]-"AT(dﬁ:ll) and one of the samples afl_ll, e ,aﬁ_]\}[. This

process must be run sequentially and relies on the modification to Parareal discussed
at the end of Section 2.2.2—that solutions are not altered once converged. Referring
again to Figure 3.3, the corresponding coarse trajectories of these optimally chosen
samples &F~! must also be calculated to carry out the PC step (lines 25-27).

At this point, the set of initial values {d’;*l, ... ,df\f_ll} has been selected from
the ensemble of random samples, effectively replacing the previously found Ufffl.
The coarse and fine propagations of these values are now used in the PC (lines 28-31)

such that

N

UF = Gar(UF_) + Far(&"71) — Gar(&571), 2<k<n<N. (3.4)

Note that dﬁ:i = Uﬁ:ll for n = k, as no sampling takes place in the left-most
(already converged) time slice. Using the same stopping criteria (2.10) from Parareal
(lines 32-35), the algorithm either stops or runs another SParareal iteration. For

completeness, we define the SParareal scheme as we did for Parareal:

46

3.2. The algorithm

Definition 3.1 (SParareal). For the two numerical flow maps Far and Gap, de-

scribed in Section 2.2, the SParareal scheme is given by

Ug =Y, (3.5a)

UY. = Gar(Uy), 0<n<N-1, (3.5b)

Uny1 = Gar(Uy) + Far(Uy) = Gar(Uy), 0<n<N-1, (3.5¢)

Unti = Gar(Uy ™) + Far(ay) = Gar(ay), 1<k<n<N-1, (35d)
where &F = UF when n =k

As a final remark, instead of minimising the distance between Far(&*~1) and one

of the samples af;ll, e afl_]\}[, one could think about doing some sort of interpolation

(recall the work of Nievergelt (1964)) to choose a more optimal point “between” the
M samples. This, however, is not possible in the Parareal setting because we require
not just the exact starting condition, which would be the optimally chosen sample,
but also its value having been propagated by Far (which we only have for the M

samples).

3.2.2 Sampling rules

The probability distributions <I>fl_1 incorporate different combinations of available
solution information, i.e. the coarse, fine, and PC solution values QAT(UEZ%),
Gar(U*=2), Far(U*=2), and UF~1, respectively. This information is used to define
the marginal means and standard deviations in the following “sampling rules”. Using
Gaussian and copula distributions, we analyse the numerical performance of different
sampling rules within SParareal in Section 3.3. This will give us a more comprehensive
understanding of whether the choice of distribution family ®*~! or the parameters
ph=1 gh=1 and RE~! have the greatest impact on the number of iterations until

convergence.

Multivariate Gaussian

First, we consider perturbing the solution states using Gaussian “noise”, i.e. con-
sidering errors compared to the exact solution states to be normally distributed, a
standard method for modelling uncertainty—similar assumptions were made in the
work of Conrad et al. (2017). The Gaussian probability density function over R? is
given by

1 1
N(z;p, X) = (2)/2 det £21/2 €xp <—2(:13 —p)E (- H)) , zERL (3.6)

The parameters g € R and & € R?*? are the mean vector and the (symmetric

positive semi-definite) covariance matrix, respectively. A real-valued random X

47

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

(a) (b)

Figure 3.4: Illustration of 5000 samples taken from two different bivariate Gaussian
distributions X = (z1,22)T ~ NM(w,X). (a) Uncorrelated samples: g = (0,0)T and
¥ = [0.625,0;0,0.625]. (b) Positively correlated samples: p = (0,0)T and ¥ =
[0.625,0.594;0.594,0.625]. The histograms depict the marginal distributions of X, i.e.
samples are approximately distributed as z; ~ N(0,0.625) and xo ~ AN(0,0.625) in
both cases.

is said to be Gaussian (normally) distributed if X ~ AN(u,X). An illustration
of samples taken from two bivariate (d = 2) Gaussian distributions with different
covariance matrices is given in Figure 3.4. Recall that the marginal distributions of

a multivariate Gaussian are also Gaussian.

The values a1 are sampled from N (uf~1, $5~1) with marginal means denoted
phl = (pkt ,...,und)T and covariance matrix (3571); ; = ph~ Jl oo k L. For the

mean vector pf~! we choose either the fine solution states FAT(Un_l) (prior to
correction) or the PC states U¥~!. For the marginal standard deviations?, we choose
ok~ = |Gar(UF~1) — Gar(UF~?)] as they are of the order of the corrections made
by the PC and each marginal decreases toward zero as the algorithm converges—the
importance of this property will be highlighted in Chapter 4. For the correlation
coefficients, pﬁ;}, we calculate the linear correlation between the Far propagated
samples using Pearson’s method—recall (3.3). The samples af L ~ N (ph=t, Bh—1)
are taken according to the following sampling rules:

Rule 1: p*~! = Far(UF=2) and oF~! = |Gar(UF)) — Gar(UF2)].
Rule 2: pf~! = U1 and oF ! = |Gar(UF]) — Gar(UF=2)].

3Testing revealed that alternative marginal standard deviations [U¥ ' —U% 2| and | Far(U*~2)—

Gar (U, k~2)| did not span sufficiently large distances around pf=! i 1n order for sampling to be efficient,
i.e they required much higher sampling to perform as well as o' = |Gar(U*~1) — Gar(UFZ2)]
(results not shown). Also, note that | - | denotes the component-wise absolute Value

48

3.2. The algorithm

(a) (b)

Figure 3.5: Illustration of 5000 samples taken from two different bivariate ¢t-copula
distributions X = (z1,22)T ~ C* with v = 1. (a) Uncorrelated samples: R = [1,0;0, 1].
(b) Correlated samples: R = [1,0.95;0.95,1]. The histograms depict the marginal
distributions of X, i.e. samples are approximately distributed as x; ~ U(0,1) and
x2 ~U(0,1) in both cases.

Note that a linear combination of both rules (or taking half the samples from each)
also works well, with performance similar to the individual rules themselves (results

not shown).

Multivariate copula

Now we wish to consider the case where samples are drawn from a multivariate
uniform distribution, allowing us to compare the performance of using perturbations
with (uniform) and without (Gaussian) closed support. The multivariate uniform
distribution, however, does not contain a dependency structure, i.e. random samples
are assumed to be uncorrelated. To be able to include such a dependency structure,
we consider using copulas.

A copula C : [0,1]% — [0,1] is a joint cumulative distribution function with
uniform marginal distributions (Nelsen, 2006). Sklar’s theorem states that any
multivariate cumulative distribution function with continuous marginal distributions
can be written in terms of d uniform marginal distributions and a copula that
describes the correlation structure between them (Sklar, 1959). This will allow
us to sample from a multivariate distribution with uniform marginal distributions
and a given correlation structure (that we can turn on and off). We will build
these copulas in such a way that they have the same marginal means and standard
deviations as sampling rules 1 and 2. While there are numerous families of copula to

choose from, we consider the symmetric t-copula C* that underlies the multivariate

49

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

t-distribution. It depends on a parameter v (representing the degrees of freedom)
and the correlation matrix R which will encode the dependency structure (this will
be RE~1 in SParareal). In Figure 3.5 we plot samples from two bivariate (d = 2)
t-copulas with parameter v = 1 and different correlation matrices—we use this value
of v in our experiments. One can see that the effect of ¥ = 1 means samples have a
higher probability of being drawn toward the edges of the box [0,1]2, i.e. the “tails”
of the distribution, than a Gaussian distribution in both cases. In addition, notice
how the marginal distributions are both uniformly distributed. If we were to send
v — 0o, we would obtain the Gaussian copula that has uniform marginals and a
Gaussian dependency structure—see Nelsen (2006) for more details on copulas.

To compare with sampling rules 1 and 2, the correlated samples X ~ C! generated
in [0, 1]% need to be re-scaled such that each marginal is uniformly distributed in an
interval [a;, b;] C R, with mean u; and standard deviation o; for i € {1,...,d}. By
definition, a marginal uniform distribution on [a;, b;] has mean (a; +b;)/2 and variance
(b; — a;)?/12 which we set equal to p; and o?, respectively. Solving these equations,
we find that the desired marginals are uniform distributions on [u; —v/305, jt; +v/305].
Therefore, scaling by 2v/30;X; + p; — V/30; guarantees that the generated samples
X ~ C! have the same marginal means p; and standard deviations o; as the Gaussian
sampling rules. This will allow us to compare the performance of both distribution
families in Section 3.3. The t-copula sampling rules (Rules 3 and 4) are therefore
defined component-wise as affm(z) = 230 X; + pi — /30y, fori € {1,...,d}, with
X ~ C! and parameters j; and o; chosen to be identical to Rule 1 and Rule 2,

respectively.

3.2.3 Computational complexity

During each iteration, SParareal uses the fine solver more frequently than Parareal,
albeit still in parallel, and therefore requires a larger number of processors. The first
iteration of SParareal requires N processors, however, once sampling begins (k > 2),
it requires at most M (N — I — 1) + 1 processors—assuming I time slices converge
during k£ = 1. This number scales directly with M and so sampling may be limited if
a small number of processors are available.

As the stochastic iterations progress, the number of processors required, i.e.
M(N — 1 — 1)+ 1, decreases as the number of converged time slices I increases.
Each additional time slice that converges leaves M processors idle meaning that we
can re-assign them to do additional sampling and propagation. We assign each set
of M idle processors to the earliest unconverged time slice with the least number
of samples, ensuring all processors are working at all times to explore the solution
space for the exact solution states (see Figure 3.6 for an illustration). We do not
explicitly write the pseudocode for re-assigning the idle processors in Algorithm 2 to

avoid additional complexity—the process is, however, implemented in the numerical

50

3.2. The algorithm

Tteration k = 2 Iteration k =3

Figure 3.6: Illustration of a possible processor configuration if two time slices were
to converge between iterations two and three of SParareal. The letter C' denotes a
converged time slice, the number 1 denotes a time slice where we propagate the converged
initial value from the preceding time slice using Far, and the letter M denotes the
number of samples taken in an unconverged time slice.

experiments in Section 3.3 4,

As we did with Parareal, we can estimate the wallclock time, speedup, and
parallel efficiency of SParareal—refer back to Section 2.2.3 for notation. Assuming
that the additional serial costs in SParareal, e.g. correlation estimation and selecting
optimal samples, take negligible wallclock time compared to T'r, we can estimate the

total wallclock time for SParareal as

k
Tspara ® NTg +Tr+ (N —1DTg+ > (Tr +2(N —i)Tg)
N—— ~ ;
Iteration 0 Iteration 1 =2 Iterations 2 to k
=kTr + (2kN — k(k + 1) + 1)Tg. (3.7)

Note that the summation term includes the additional cost of running Gar for the
optimal samples (as well as the runs of Gar carried out in the PC step). The parallel

speedup of SParareal can then be written as

Tserial . k k 1 Tg -
Sspara A Topara [N + <2k - N(k“‘ 1)+ N> T]:}) (3.8)

and the parallel efficiency as

B . SSPara o 1
SPara ~ NM = M

[k b (2kN — k(k+1)+1) Tg} g (3.9)
Tr
Assuming the ratio Tg /T is negligible, we expect that iterations in SParareal and
Parareal will have very similar runtimes. Therefore, if SParareal converges in fewer
iterations than Parareal, the wallclock time for SParareal will be lower than for
Parareal (as we will see in Section 3.3). This does, however, come at a cost of
requiring O(M N) processors rather than N to solve the IVP, which in turn degrades
the parallel efficiency (3.9) of the algorithm quite significantly. Although, it should

4To increase efficiency further we also attempted to store previously sampled and propagated fine
trajectories to use in future iterations of the algorithm, however, they did not improve performance.
This was because only the most recently obtained samples were ever chosen in each iteration (results
not shown).

o1

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

be highlighted that if SParareal converges in even one less iteration than Parareal,

we avoid an extra run of Far which will save at least T seconds of wallclock time.

3.2.4 Convergence

It should be clear that given the stochastic nature of SParareal, it will return a
numerical solution U” which varies stochastically between independent simulations
of the algorithm. Given the inherent randomness encoded in the numerical solutions,
we can discuss the convergence of SParareal in two ways.

Firstly, we consider convergence in terms of minimising kg, the number of iterations
taken for SParareal to converge (noting that this is a random variable). We can do
this by studying P(ks < k), the probability of SParareal converging in fewer iterations
than Parareal. Proving that P(ks < k) = 1, or at least E(ks) = Y2V | iP(ks = i) < k,
will be challenging given that there are no analytical results for Parareal guaranteeing
that k < N for any given problem. We can , however, qualitatively discuss P(ks < k)

and E(ks) with respect to the number of samples M. Consider the following cases:

(i) M=1
Running SParareal is equivalent to running Parareal, hence the convergence of
SParareal follows from that of Parareal and therefore E(k;) = ks = k.

(i) 1<M< o0
When using finitely many samples, we compute the discrete probability distri-
butions P(ks = k) and observe, in all numerical experiments (see Section 3.3),
that P(ks < k) — 1 as M increases. Moreover, we observe E(k;) decreases for
increasing M, with E(ks) < k for all values of M tested.

(ili)) M — oo
If we were able to take infinitely many samples, SParareal effectively samples
every possible value in the support of @, i.e. every solution state that has a
non-zero probability of being sampled from ®. Therefore, if ® has infinite
support, e.g. the Gaussian distribution, all possible solution states in R¢ are
sampled and propagated, hence the fine solution will be recovered almost
surely in E(ks) = 2 iterations. Note this is the smallest value ks can take to
converge assuming convergence does not occur following the first iteration. In
Section 3.3.1, we try to illustrate this property numerically by taking a large

number of samples for a single realisation of SParareal.

In the scenario that SParareal converges in ks = N iterations (irrespective of the
value of M), it will return the fine solution just as Parareal does when k = N (having
propagated the exact initial value at to sequentially N times using Far).

Secondly, we can consider convergence in terms of the stochastic solution states

Uk (3.4) approaching (in the mean-square sense) the exact solution states U, as

52

3.3. Numerical experiments: nonlinear ODEs

k increases. Deriving rigorous mean-square error bounds for SParareal, however,
requires a lot of set up and so we postpone this analysis until Chapter 4. There we will
give a full exposition of the convergence of SParareal, deriving explicit mean-square
errors bounds under a number of different assumptions on the solvers and for the
sampling rules. In the numerical experiments in Section 3.3, we do not observe a
case where SParareal fails to converge to the exact solution. In fact, we observe
tight confidence intervals on the numerical errors between U* and U,, upon multiple
realisations of SParareal (see Figure 3.10 and Figure 3.14). The only situation in
which SParareal may fail to converge (i.e. solutions blow up) is in cases in which
Parareal also fails—typically this means that a more accurate coarse solver is required

for both algorithms.

3.3 Numerical experiments: nonlinear ODEs

In this section, we compare the numerical performance of Parareal and SParareal on
nonlinear ODE systems of increasing complexity. We fix Far = Gar = RK4 for all
experiments and let Nz and Ng denote the number of time steps each solver uses over
[to, T'], respectively. Due to the stochastic nature of solutions from SParareal, we will
quantify performance by estimating the distributions of ks for each sampling rule over
a number of independent simulations, comparing these results to the deterministic
value k obtained by Parareal. We will also measure the accuracy of the stochastic
solutions against those obtained serially with Far. At the time of writing only a
limited number of processors were available for these experiments, hence the majority
of the results in this section are based not on calculating wallclock runtimes but on
comparing the iteration counts k£ and ks—which are independent of the number of
processors used®. Additional results for two further test problems can be found in

Appendix C.

3.3.1 Scalar nonlinear equation
First, we consider the nonlinear nonautonomous scalar ODE

d

di: = sin(u) cos(u) — 2u + e~/ sin(5¢) + In(1 + t) cos(t), (3.10)
with initial value u(0) = 1 (Chartier and Philippe, 1993). We discretise the time
interval ¢ € [0,100] using N = 40 time slices and Ng = 100 coarse and Nr = 8000
fine time steps, respectively. Numerical solutions to (3.10) are shown on the interval

[0, 18] in Figure 3.7(a) where (deterministically) Parareal locates a solution in k = 25

®We obtained access to a larger number of processors following the publication of this work
and so we have retrospectively run some experiments to examine the wallclock time and speedup
generated by SParareal in Section 3.3.1.

93

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

10°

Fine o© SParareal # Pararecal

100
102
104

106

Max. absolute error

sf |7 Parareal
10" F | —e—SParareal
- = = -Tolerance

BN 1) S 0\

o ! I I . 10712
0

() (b)

Figure 3.7: (a) Numerical solution of (3.10) over [0, 18] using Far serially (back), a
single realisation of SParareal (blue), and Parareal (red). Note that only a subset of
the fine times steps of the SParareal and Parareal solutions are shown for clarity. (b)
Errors at successive iterations of Parareal (red line) and ten independent realisations of
SParareal (blue lines). Horizontal dashed black line represents the stopping tolerance
e = 107'°, Note that both panels use SParareal with sampling rule 1 and M = 3.

iterations using error tolerance ¢ = 1071, SParareal converges in a varying number
of iterations ks, with P(ks < k) = 1, see Figure 3.7(b) for the convergence of ten
independent simulations using M = 3. From this plot, we can see that by taking
just three samples, SParareal reduces the number of iterations by almost a factor
of two—from 25 to approximately 13 or 14. In Figure 3.8, we can see how this
directly translates to increased speedup®, where we observe SParareal locating a
solution between 2.25-3x faster (than the serial Far solver) and Parareal only 1.4x
faster. Also shown are the speedup results when taking two or four samples and the
corresponding theoretical bounds on speedup derived in Section 3.2.3. These results
highlight that speedup continually increases as more samples are taken, at a cost of
using significantly more processors (which is detrimental to the parallel efficiency of
the algorithm).

We know that for M > 1, SParareal generates stochastic solutions that converge
in a varying number of iterations ks. In order to accurately compare k with the
discrete random variable kg, we run 2000 independent simulations of SParareal to
estimate the distribution of kg for a given M. Upon estimating these distributions,
it was found that P(ks < 25) = 1 for each of the four sampling rules (for all M > 1),
meaning that we can beat Parareal with probability one. The estimated distributions
of kg, using sampling rule 1 (the other rules perform similarly), as a function of M are
given in Figure 3.9(a). The stacked bars represent the estimated discrete probability

of a simulation converging in a given number of iterations. The results show SParareal

5Note that to generate the speedup results, N» was increased by a factor of 10* so that the
ratio Ty /Tr was sufficiently small as to return meaningful speedup results.

54

3.3. Numerical experiments: nonlinear ODEs

* Parareal (theory)

457 o Parareal (numerical)

—*— SParareal (theory)

- - -SParareal (numerical, M = 2)

- - -SParareal (numerical, M = 3)|{
- ©- -SParareal (numerical, M = 4)

Speedup
[t
5}
II
()]
3
@

0 12 14 16 18 20 22 24 26
Tterations (k)

Figure 3.8: Speedup against iterations k, obtained when solving (3.10). Experiments
(with sampling rule 1) are run over 50 independent simulations showing mean speedup
with M = 2 (blue), M = 3 (purple), and M = 4 (brown) samples. Speedup for Parareal
is also shown (red circle), calculated by averaging over 10 independent simulations.
Corresponding theoretical results (red star and solid black line) were calculated using
(2.12) and (3.8) for Parareal and SParareal, respectively.

converging in just five iterations in the best case—demonstrating SParareal has the
potential to yield significant parallel speedup, although this would require O(10%)
processors to achieve! Clearly using this many processors to achieve (up to) 8x
speedup would be overkill for such a simple IVP but it demonstrates that SParareal
works as expected. Figure 3.9(b) emphasises the power of the stochastic method,

showing that the estimated expected value E(k;) decreases as M increases, with the

estimated standard deviation sd(ks) = \/ Z]kV:1(k — E(ks))?P(ks = k) decreasing too.

1 25
0.9 H —&—Rule 1|7
[—&—Rule 2| |
081 A\ —&—Rule 3| |
0.7 H 20+ W & Rule 4| |
zosy 2 [\]

Z o5} I \]

2 G1s|]]

& 0.4 H s r 1
03} =l 1
024 10}]
0.1+ [L 7 1

- L I 1
[8o)
T) ,\/0 ,‘/0 ,,)Q D‘Q (00‘»00’190090 vQQ")QQ,\‘QQQ 5100 161 1(.)2 103
Number of samples (M) Number of samples (M)
(a) (b)

Figure 3.9: (a) Estimated discrete distributions of ks as a function of M for sampling

rule 1. (b) Estimated expectation of ks as a function of M, calculated using estimated

distributions of ks for each sampling rule with error bars representing £+ two standard

deviations sd(ks). Distributions in both panels are estimated by simulating 2000

independent realisations of SParareal for each M.

95

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

Error
o
r

T am

Parareal error
Mean SParareal error -
Mean SParareal error + two std. devs.
5 T T I I l I |

0 10 20 30 40 50 60 70 80 90 100
t

Figure 3.10: Errors of Parareal (red) and mean SParareal (black) solutions against the
serial Fap solution over time. The mean error is obtained by running 2000 independent
realisations of SParareal with sampling rule 2 and M = 4—the confidence interval
representing the mean + two standard deviations is shown in light blue.

The improved performance of SParareal as M increases reflects what was discussed in
Section 3.2.4. We also ran a single realisation of SParareal with M = 10°, observing
that SParareal converged in four iterations (result not shown), confirming that kg
continues to decrease for increasing M. By looking at Figure 3.9(b), we see that
sampling rule 1 yields the lowest expected values of kg for small values of M, with
all sampling rules performing similarly for large M.

To verify the accuracy of the stochastic solutions, we plot the difference between
the mean of 2000 independent realisations of SParareal and the serially calculated
Far solution in Figure 3.10. Also shown is the confidence interval given by two
standard deviations of the stochastic solutions (which is at most O(1071!)) and
the error generated by Parareal. Accuracy is maintained with respect to the fine
solution across the time interval, even more so than the Parareal solution. See
Appendix C.1 for numerical results of SParareal applied to a stiff scalar nonlinear
ODE. In that case, the stiffness of the equation demands a higher value of M to

improve ks;—something we observe for the Brusselator in the next section.

3.3.2 The Brusselator system

Next, consider the Brusselator system

% = A+ uiug — (B + 1)uy, (3.11a)
% = Buy — udus, (3.11b)

a pair of stiff nonlinear ODEs that model an auto-catalytic chemical reaction (Lefever

and Nicolis, 1971). Using parameters (A, B) = (1,3), trajectories of the system

56

3.3. Numerical experiments: nonlinear ODEs

exhibit oscillatory behaviour in phase space, approaching a limit cycle (as t — 00)
that contains the unstable fixed point (1,3)T. Now that d > 1, we use bivariate
distributions to sample the initial values—meaning we can compare the effects of
including or excluding the correlations between variables. System (3.11) is solved
using initial value u(0) = (1,3.07)T over time interval ¢ € [0,15.3] with N = 25,
Ng = 25, and Nr = 2500 (Trefethen et al., 2017). In Figure 3.11(a), we plot
numerical solutions to system (3.11) in the phase plane and the errors at successive
iterations of ten SParareal simulations in Figure 3.11(b). With these parameters
and a tolerance of € = 1075, Parareal takes k = 7 iterations to stop and return a
numerical solution whilst SParareal takes ks = 6.

The estimated distributions of ks for sampling rule 1 are given in Figure 3.12(a).
Even though Parareal takes just k = 7 iterations to stop, we observe that SParareal
can still reach the desired tolerance in 5 or 6 iterations—albeit requiring larger values
of M. We believe this is due to the stiffness of the system and poor accuracy of
the Gar solver—results presented for the stiff ODE in Appendix C.1 appear to
confirm this. The solid lines in Figure 3.12(b) show that, using sampling rules 1 or 3,
SParareal only requires M = 10 to beat Parareal almost certainly, i.e. to guarantee
that P(ks < 7) — 1. Sampling rules 1 and 3 outperform 2 and 4 in this particular
system. Note, however, the stark decrease in performance if instead uncorrelated
samples are generated within SParareal (dashed lines). This demonstrates the
importance of accounting for the dependence between variables in nonlinear systems
such as (3.11). In Figure 3.13 we report the expected value of ks as a function

of M for each of the sampling rules. These results further suggest (in addition to

5 T T T T T T T 102

—o— Parareal
—o— SParareal

- - - -Tolerance/| |

Max. absolute error

Fine o© SParareal # Parareal

0.5 ‘

0 0.5 1 1.5 2 2.5 3 3.5 4
(1 k

(a) (b)

Figure 3.11: (a) Numerical solution of system (3.11) in the phase plane using Far
(black), Parareal (red), and SParareal (blue). Note that solutions from Parareal and
SParareal are shown at times t for clarity. (b) Errors at successive iterations of Parareal
(red line) and ten independent realisations of SParareal (blue lines). Horizontal dashed
black line represents the tolerance ¢ = 10~%. Both panels run SParareal with sampling
rule 1 and M = 10.

o7

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

.......... e »
1 = ° 1 1 ™2
09} o L o9t o
0.8 g 0.8+
07} 107t
£0.6H 1 06"
? I~
‘s 05¢ H v L
9 < 0.5 —e—Rule 1
&~ 0.4 1~ 04l o— Rule 2
0.3 —e—Rule 3
' P (k, =5) 0.3+ —e Rule 4
0.2 P (ks = 6) ---@--Rule 1 (uncorrelated)
Pk, =1) 02rp/7s e Rule 2 (uncorrelated) |
0.1 —o—P(k, <7 0.1 -~ Rule 3 (uncorrelated) | |
0 le Lo 3 ©-Rule 4 (uncorrelated)
ST X000 0 0L L 0 L I
NN ST QOO OO
VAT W 9N 10° 10! 102
Number of samples (M) Number of samples (M)

(a) (b)

Figure 3.12: (a) Estimated discrete probabilities of ks as a function of M for sampling
rule 1. (b) Estimated probability that the convergence rate k4 is smaller than k£ = 7
as a function of M for the sampling rules with (solid lines) and without (dashed lines)
correlations. Distributions were estimated by simulating 2000 independent realisations
of SParareal for each M.

Figure 3.12(a)) that larger values of M are required to reduce E(ks) even further
for this stiff system. Observe, in Figure 3.14, how the mean SParareal solutions still
maintain equivalent or better accuracy than the Parareal solutions, with standard
deviations at most O(107°).

In Appendix C.2, we apply SParareal to a non-stiff two-dimensional nonlinear
system and observe that less sampling is required to accelerate convergence compared

to the Brusselator system.

—&—Rule 1 ---o---Rule 1 (uncorrelated)
—&—Rule 2 - Rule 2 (uncorrelated) | 4
—&—Rule 3 --©---Rule 3 (uncorrelated)

& Rule 4 o Rule 4 (uncorrelated) | |

£ b
E R T
hil T 1 il
<
<3}

5 =

4.5
4 . .
10° 10 102 10

Number of samples (M)

Figure 3.13: Estimated expectation of k4 as a function of M, calculated using estimated
distributions of ks for each sampling rule with error bars representing + two standard
deviations sd(ks) shown for correlated (solid lines) sampling rules. Uncorrelated sampling
rules are shown with dashed lines without error bars. Distributions are estimated by
simulating 2000 independent realisations of SParareal for each M.

o8

3.3. Numerical experiments: nonlinear ODEs

%1077 %1077

Parareal error
| |——Mean SParareal error
Mean SParareal error + two std. devs.

Error
U A W N H O B N W & O
L i i L A H H i L
Error
O A W N FH O F N W & O

(a) (b)

Figure 3.14: Errors of Parareal (red) and mean SParareal (black) solutions against
the Far solution. The mean error is obtained by running 2000 independent realisations
of SParareal with sampling rule 4 and M = 200—the confidence interval representing
the mean £ two standard deviations is shown in light blue. Panel (a) displays errors for
the u; component of the solution whilst (b) displays the us component.

3.3.3 The Lorenz63 system

Finally, we consider the Lorenz63 system

d
7;;1 = 71 (uz — u1), (3.12a)
d
—(;f = U1 — uruz — Uz, (3.12b)
d
7(;;3 = Uruz — Y3U3, (3.12¢)

a simplified model for weather prediction developed by Lorenz (1963). With the
parameters (v1,72,73) = (10,28,8/3), (3.12) exhibits chaotic behaviour where tra-
jectories with initial values close to one another diverge exponentially. This will test
the robustness of SParareal, as small numerical differences between initial values will
mean that errors can grow rapidly as time progresses. We solve (3.12) using initial
value u(0) = (=15, —15,20)T over the interval [0, 18], discretised using N = 50 time
slices and time steps Ng = 250 and Nz = 18,750. With a tolerance of ¢ = 1078,
Parareal takes k = 20 iterations to converge.

Running SParareal to compare the performance of the sampling rules, we see
again in Figure 3.15(a) that taking correlated samples is much more efficient than
not and that only M =~ 10 samples are required to beat Parareal with probability
one. For the chaotic trajectories generated by (3.12), sampling close to the PC, rules
2 and 4, yields superior performance compared to rules 1 and 3 for small values of
M. Figure 3.15(b) displays estimated distributions for varying M using sampling
rule 2—yielding a best ks = 16 for approximately 25% of runs with M = 1000.

99

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

0.9 H
0.8

0.9+
0.8+

0.7 - 0.7 |

P (i, = 16)

s 06 2067 EmP (i = 17)
Vsl Z05¢ P (ks = 18)
e —e—Rule 1 S Pk, = 19)
& 04t —e—Rule 2 &~ 0.4 H P (ks = 20)
—e—Rule 3 03/ —eo—P(k, < 20)

0.3 —e—Rule 4

o
N

--©--Rule 1 (uncorrelated)
—-o--Rule 2 (uncorrelated) | T

02t/

o
=

---©--Rule 3 (uncorrelated)| |

01f ~-o--Rule 4 (uncorrelated)
0e s NY DY X ,\’Q '79 ,-,)Q o (,)Q QQ QQ QQ 00 QQ QQ
10° 10! 102 R RN
Number of samples (M) Number of samples (M)
(a) (b)

Figure 3.15: (a) Estimated probability that the convergence rate k; is smaller than
k = 20 as a function of M for the sampling rules with (solid lines) and without
(dashed lines) correlations. Distributions were estimated by simulating 2000 independent
realisations of SParareal for each M. (b) Estimated discrete probabilities of ks as a
function of M for sampling rule 2.

Figure 3.16 displays E(ks) against M, confirming that generating correlated samples
close to the PC solutions (sampling rules 2 and 4) yield the lowest expected values of
ks—although it takes a large number of samples to reduce the iteration count by just
a few. As before, we plot the absolute errors between the mean SParareal solution
and the fine solution for completeness—see Figure 3.17. Accuracy is again maintained
with respect to the Parareal solution, even as the errors grow with increasing time
(which is expected in a chaotic system). Keeping the errors (relatively) small is

challenging for PinT methods when solving chaotic systems and so these results

21
20.5
20¢
~19.5¢
2
E 19
H
—~ 18.5+
=
B o1t
17.5|——Rule 1 --o---Rule 1 (uncorrelated)
—&—Rule 2 -—-o---Rule 2 (uncorrelated)
17 |——Rule 3 —o-Rule 3 (uncorrelated)
—&—Rule 4 o Rule 4 (uncorrelated)
16.5 -
10° 10 10?

Number of samples (M)

Figure 3.16: Estimated expectation of k4 as a function of M, calculated using estimated
distributions of ks for each sampling rule with error bars representing + two standard
deviations sd(ks) shown for correlated (solid lines) sampling rules. Uncorrelated sampling
rules are shown with dashed lines without error bars. Distributions are estimated by
simulating 2000 independent realisations of SParareal for each M.

60

3.4. Discussion and further work

Parareal error
Mean SParareal error
Mean SParareal error + two std. devs.

Figure 3.17: Absolute errors of Parareal (red) and mean SParareal (black) solutions
against the Far solution in each component: u; (top), uz (middle), and ug (bottom).
The mean error is obtained by running 2000 independent realisations of SParareal with
sampling rule 2 with M = 500—the confidence interval representing the mean £ two
standard deviations is shown in light blue.

demonstrate the robustness of SParareal and that the sampling and propagation

process is not impeded by the exponential divergence of trajectories.

3.4 Discussion and further work

In this chapter, we have extended the Parareal algorithm using probabilistic methods
to develop a (sampling-based) stochastic Parareal algorithm for solving systems of
ODEs in a time-parallel manner. Instead of passing deterministically calculated
solution states into Parareal’s PC (2.9c), SParareal selects “more accurate” values
from a randomly sampled set, in each time slice, to converge in fewer iterations. In
Section 3.3, we compared performance against the deterministic Parareal algorithm
on several low-dimensional ODE systems of increasing complexity by calculating
the distributions of the iteration count (upon multiple independent realisations of
SParareal) with increasing numbers of random samples M. By taking just M =~ 10
(correlated) samples, the estimated probability of converging sooner than Parareal
approached one in all test cases. Similarly, we observed numerical convergence toward
the fine (exact) solution with accuracy of similar order to Parareal and obtained a
distribution over the ODE solution upon multiple realisations of the algorithm.
The probability that SParareal converges faster than Parareal depends on a
number of factors: the complexity/size of the problem being solved, the number of
time time slices (N), the accuracy of the coarse integrator (Gar), the number of
random samples (M), and the type of sampling rule in use. Sampling rules 1 and
3 (sampling close to the fine solution states) outperformed rules 2 and 4 (sampling
close to the PC states) for the ODE systems in Section 3.3.1, Section 3.3.2, and

61

Chapter 3. SParareal I: a sampling-based time-parallel algorithm

Appendix C.1. The reverse was true, however, for the systems in Section 3.3.3
and Appendix C.2, making it difficult to determine an optimal rule for a general
ODE system. To overcome having to choose a particular sampling rule, one could
linearly combine different rules or even sample from multiple rules simultaneously.
We would suggest sampling from probability distributions with infinite support,
i.e. the Gaussians (rules 1 and 2), so that samples can be taken anywhere in R?
with non-zero probability. Having finite support may have created difficulty for the
uniform marginal ¢-copulas (rules 3 and 4) because samples could only be taken in
a finite hyperrectangle in R4 problematic if the exact solution state were to lay

outside of this space.

When solving stiff ODEs (see Section 3.3.2 and Appendix C.1), results indicated
that SParareal demanded increasingly high sampling to converge sooner than Parareal
than for non-stiff systems. For example, we observe that when taking M = 100
samples in the non-stiff scalar ODE in Figure 3.9, the expected number of iterations
decreases from 25 to 7 whereas for the stiff scalar ODE in Appendix C.1, the number
only drops from 8 to 6. A similar observation can be made in the two-dimensional test
cases in Section 3.3.2 (stiff) and Appendix C.2 (non-stiff). These results exemplify the
role that system complexity, e.g. stiffness or chaos, plays in the performance of both
algorithms. In Appendix C.1, SParareal was also shown to perform more efficiently
for problems that Parareal itself struggles with, i.e. cases in which the accuracy of
the coarse integrator Gar is poor. In Appendix C.2 it was also observed that, for low
sample numbers (M = 2), SParareal actually converged in one more iteration than
Parareal in less than 2.5% of cases. This suggests there may be minimum number of
samples required to beat Parareal in some situations—something to be investigated

with further experimentation.

The curse of dimensionality also plays a stark role in the performance of SParareal.
It should be obvious that as the dimension of the system d increases, the effectiveness
of the sampling (for fixed M) will decrease. In other words, SParareal will require
exponentially increasing numbers of samples as d increases—this can be seen in
Section 3.3.3 where a large M is required to reduce ks by even a few iterations
(where d is only equal to three). This is problematic as the number of processors
scales directly with M and so for very high dimensional systems (think about PDEs
discretised with a large number of spatial points), the number of processors required
to solve in parallel (faster than Parareal) will be exceedingly large. We are unsure
how to avoid this issue but assessing performance on problems with larger d certainly

warrants further investigation.

In addition to accelerated convergence, we were able to generate a distribution
of stochastic solutions to the IVPs tested using SParareal. While the distributions
generated by such ensembles may not have an explicit mathematical interpretation

(i.e. the uncertainty does not represent numerical uncertainty generated by the fine

62

3.4. Discussion and further work

or coarse solvers), the individual stochastic trajectories are indeed accurate with
respect to the fine solution. Therefore, each one can be interpreted as a solution
to the IVP and their stochastic nature is useful in that they may reveal additional
information about the system dynamics we may not see with a single deterministic
trajectory. In Chapter 4, we derive explicit error bounds for the solutions obtained
from SParareal, showing that perturbations of small enough “size” are required to
obtain accurate solutions—a condition that the sampling rules automatically satisfy.

In summary, we have demonstrated that sampling-based methods and addi-
tional processors can, for low-dimensional ODEs at least, be used to accelerate the
convergence of Parareal. There exist a few avenues for possible improvement and
generalisation. Firstly, if information is known about the behaviour of the solution
prior to simulation (e.g. if it is bounded or perhaps non-negative) then one could
construct a sampling rule to satisfy these requirements. Secondly, one could use
an alternative stopping criterion that halts SParareal when the largest standard
deviation of the distribution (in each time slice) is below e. This would indicate that
solutions are no longer being improved significantly and so SParareal should stop,
potentially saving a costly iteration or two. In terms of the solvers Far and Gar, one
could test whether the sampling-based solvers developed by Conrad et al. (2017) could
be used within Parareal—although some adaptation would be required to ensure
that perturbations are not amplified by the PC scheme, leading to non-convergence.
Finally, it would advantageous to avoid wasting the valuable information about the
system gained from the ensemble of fine propagated trajectories and see whether
it can be harnessed to extract further numerical speedup. This is something we
will explore in Chapter 5 when we develop GParareal, adopting a more Bayesian
approach to the problem by using all of the available solution data (at all iterations

and time steps) to inform the Parareal PC update.

63

Chapter 4

SParareal II: error bound

analysis

Overview

Deriving rigorous error bounds for SParareal (and other PinT methods in general)
is important in demonstrating that numerical solutions obtained in parallel are
meaningful, accurate, and that they can be compared to one another (Gander et al.,
2022). In this chapter, we extend the qualitative discussion of numerical convergence
from Section 3.2.4 by making use of existing convergence analysis on Parareal (recall
Section 2.2.4) and the sampling-based ODE solver proposed by Lie et al. (2019). We
derive explicit mean-square error bounds for SParareal applied to nonlinear systems
of ODEs (over a finite time interval), using two different types of perturbation:
state-independent and state-dependent.

We begin in Section 4.1 by re-defining the SParareal scheme in such a way
that allows us to carry out our convergence analysis. The reason for this is that
definition (3.1) is very difficult to manipulate and analyse, therefore we need to
make a simplification to derive rigorous error bounds. We then recall the sampling
rules first introduced in Section 3.2.2. In Section 4.2, we outline the assumptions
on the fine and coarse integrators required to derive the error bounds. We first
consider the state-independent setting, in which the random perturbations do not
depend on solution states at any time step or iteration and are assumed to have
bounded absolute moments. In this setting, we derive our main result (Theorem 4.6),
a superlinear bound on the mean-square error that depends on both the time step
and iteration of SParareal. Using this result, we can maximise the error over time
to derive a linear error bound (Corollary 4.7). In the state-dependent setting, we
allow the perturbations to depend on solution states up to the current time step and
iteration, i.e. the known coarse and fine solution information. This will allow us to

analyse the convergence of the sampling rules proposed in Chapter 3. We derive

64

4.1. Re-defining SParareal

linear bounds (Corollaries 4.13 and 4.14) in this setting. Following this, we verify all
of the theoretical bounds by comparing them to numerical errors generated when
solving a linear system of ODEs and a nonlinear scalar ODE in Section 4.3. We
conclude with some brief remarks on the significance of these results and discuss the

limitations which could warrant further study in Section 4.4.

Throughout this chapter, we denote variables u,v € R? as d-dimensional real-

valued vectors, the component-wise absolute value of a vector as |u| = (Ju1], ..., |uq|)7T,
and the Hadamard (component-wise) product as wo v = (ujvy,...,uqvg)T. We let
2 2

u” correspond to component-wise squaring, i.e. u* = w o u, and ||u|| the infinity (or
uniform) norm, i.e. ||u|| = max;—; g |u;|. The d-dimensional vector of ones and the
identity matrix will be written as 1 and I, respectively, with non-negative constants
denoted throughout by C, Cs,.... In Appendix D, we provide some technical results

used to derive the aforementioned error bounds.

4.1 Re-defining SParareal

In this section, we provide an alternative (but equivalent) definition of the SParareal
scheme needed to carry out the error bound analysis in Section 4.2. Note that
throughout this chapter we will be considering autonomous IVPs, i.e. f(t, u(t)) :=
f(u(t)) in (2.1), where everything that follows should extend naturally to the

nonautonomous case.

4.1.1 The alternative scheme

The intuition behind SParareal is to perturb the solution states U” in the classic
Parareal scheme, i.e. the PC (2.9¢), with some additive noise to reduce the number of
iterations k taken until the stopping tolerance (2.10) is met. The original definition
(3.1) was difficult to analyse because it allowed for the taking of M random samples
and it was unclear how to bound the error of this scheme. We propose the following
alternative definition of SParareal, inspired by the form of the sampling-based ODE
solver proposed by Conrad et al. (2017), whereby only one random sample is now

taken.

Definition 4.1 (Alternative SParareal). For the two numerical flow maps Far and
Gar, described in Section 2.2, the (alternative) SParareal scheme is given by

Uy = u’, (4.1a)
Ul ., =Gar(UY), 0<n<N-1, (4.1b)
U, i1 = Gar(Uy) + Far(UY) = Gar(UY), 0<n<N-1, (4.1c)
Uyti = Gar(Uyt) + Far(Uy) = Gar(Uy) +€5(Uy), 1<k<n<N-1, (41d)

65

Chapter 4. SParareal II: error bound analysis

where &¥(UF) are (possibly state-dependent) random variables. Note that £X(U¥) =

0 when n = k.

The first three stages of the scheme (4.1a)—(4.1¢c) are identical to the ‘zeroth’ and
first iteration of Parareal. The exact initial condition (4.1a) is propagated forward
in time using the coarse solver (4.1b), then there is a first pass of the PC (4.1c).
Following this, the stochastic iterations begin (4.1d), whereby a random perturbation,
i.e. a single draw from the random variable £€¥(UF), is added to the PC solution.
Notice that no random perturbation is added when n = k to ensure that SParareal
returns the exact solution up to time ¢y after k iterations, just as Parareal does
(recall Section 2.2.3). The reason the random perturbations are only included from
iteration k > 1 onward is because £F(U¥) may depend on solution information from
iteration k — 1. Note that the Parareal scheme (2.9) can be recovered by setting
EF(UF) =0 for n > k in (4.1d).

The scheme in (4.1) looks slightly different to the one presented in (3.5), where
random perturbations were instead incorporated via random variables (denoted by
the optimal sample &) in the correction term. The different state-dependent forms
that afl can explicitly take are defined through the sampling rules in Section 4.1.2.
Also note that af = U¥ when n = k, which is equivalent to the condition that
£F(UF) = 0 when n = k in (4.1d). The scheme defined by (3.5d) was designed so
that M > 1 samples could be drawn from each of the random variables a* to increase
the probability of locating the exact solution state U, in fewer iterations. From the
sets of samples generated at each t,, all having been propagated in parallel using
Far and Gar, those generating the most continuous Farp trajectory across [to, ty]
were then chosen as the “best” perturbations &*. Numerical experiments illustrated
that increasing M led to further and further reductions in k, albeit at the cost of
requiring more processors, specifically O(M N) in SParareal vs O(N) in Parareal.

To enable us to carry out the convergence analysis, we move the random per-
turbations in (3.5d) outside the correction term, and express them using & (U?) in
(4.1d). This new scheme is equivalent to the old scheme in the case where one sample
(M = 1) is drawn at each t,'. The following error bounds are derived assuming one
sample is drawn from each £X(U¥)—the M sample case from Chapter 3 is much

more complex and out of the scope of the present work.

4.1.2 Sampling rules

The sampling rules presented in Section 3.2.2 describe the probability distributions
that af follow in the SParareal algorithm, see Table 4.1 for a summary. These

distributions were designed to vary with both iteration k and time step n, so that as

'Note that in the new scheme (4.1), M = 1 corresponds to drawing a random sample, whereas
M =1 in the old scheme (3.5) corresponded to taking the (deterministic) PC state and simply
running Parareal.

66

4.2. Error bound analysis

Table 4.1: Sampling rules that the random variables af follow. The quantities
zF ~ N(0,1;) and wk ~ U(]0,1]?) are d-dimensional Gaussian and uniform random
vectors, respectively, whilst % = |Gar(UF_|) — Gar(UF71)].

’ Sampling rule ‘ Distribution ‘ ok ‘
1 . Far(U,Z1) + (o5 0 21)
Gaussian
2 Uy + (o 0 25)
3 , Far(UEZ1) + (V3ok o 2wk — 1))
Uniform
4 Uy + (V3a) o 2wy, — 1))

the solution states U¥ get closer to U, their variances would decrease—the benefit
of this property will be highlighted in Section 4.3. These (state-dependent) rules
were constructed to assess the performance of SParareal when the perturbations
had different distribution families, marginal means, or correlations. To derive error
bounds for the sampling rules, we need to define £€¥(U¥) in terms of a. To do this,
we simply equate (4.1d) and (3.5d) to find

EUY) = (Far(al) — Gar(ay)) = (Far(UY) = Gar(Uy)). (4.2)

Recall that sampling rules 1 and 2 correspond to multivariate Gaussian perturba-

tions with marginal means]:AT(Uf,fjll) and U¥, respectively, and marginal standard
k—1)|

deviations af = |Gar(U*) — Gar(U, . Sampling rules 3 and 4 correspond to
perturbations following a multivariate uniform distribution with the same marginal

means and standard deviations as rules 1 and 2, respectively. Note that in Sec-

k

tion 3.2.2, we considered both correlated and uncorrelated random variables oy in

our experiments, whereas here we carry out analysis only for the uncorrelated case.

4.2 Error bound analysis

In this section, we will be analysing the mean-square error

eb = E[|u(t,) — UF|?], (4.3)

n

between the exact solutions w(t,) (equivalently U,,) and the stochastic numerical
solutions U located by SParareal (4.1). We also define the maximal mean-square

error (over time) at iteration k to be

é* := max {ef}. (4.4)

1<n<N

67

Chapter 4. SParareal II: error bound analysis

Specifically, we analyse the mean-square error ef for the nonlinear (autonomous)
system of ODEs in (2.1), first deriving superlinear (Theorem 4.6) and linear (Corol-
lary 4.7) bounds using state-independent perturbations in SParareal. Then, using
these results, we derive linear bounds for the state-dependent sampling rules 2 and 4
(Corollary 4.13) and 1 and 3 (Corollary 4.14). In the following, we introduce some
assumptions on the flow maps (Gander and Hairer, 2008) and perturbations (Lie

et al., 2019) required to derive the error bounds.

Assumption 4.1 (Exact flow map Far). The flow map Far solves (2.1) exactly
such that

u(tn+1) =]:AT(u(tn))' (4'5)

This assumption is made for simplicity, since SParareal is trying to locate the solution
that would be obtained by running the fine solver serially, i.e. (2.3), in parallel. If
instead we were to consider Far to be a numerical method with some (very small)
numerical error with respect to the exact solution, then the accuracy of Far would

provide a lower bound on the accuracy of the SParareal scheme as a whole.

Assumption 4.2 (One-step coarse flow map Gar). The flow map Gar is a one-step
numerical method with uniform local truncation error O(ATPH!), for p > 1, such
that

Far(uw) — Gar(u) = 1 (w) ATPT 4 co(u) ATPF + ..., (4.6)

for u € R? and continuously differentiable functions ¢;(u). Taking the difference of
(4.6) evaluated at states u,v € R?, then applying norms and the triangle inequality,

we can write

| (Far(uw) — Gar(u)) — (Far(v) = Gar(v)) | < CLATP |lu — o], (4.7)

where C] > 0 is the Lipschitz constant for ¢; and we absorb terms O(ATP*2) into
C1.

Assumption 4.3 (Lipschitz coarse flow Gar). The flow map Gar satisfies the

Lipschitz condition
1Gar(uw) = Gar(v)|| < Lgllu — |, (4.8)
for w,v € R? and Lipschitz constant Lg > 0.

Note that these assumptions do not restrict the choice of Gar, as they are met when

choosing any Runge-Kutta or Taylor method (Hairer et al., 1993).

68

4.2. Error bound analysis

In addition to assumptions on the flow maps, we require an assumption on the
absolute moments of the (state-independent) random variables, which will be needed

to prove Theorem 4.6.

Assumption 4.4 (Bounded absolute moments of £€X). For ¢ > 0, # € NU {co}, and
Cy > 0 independent of n, k, and AT, the r-th absolute moments of £ satisfy

E[|lgh]"] < (CAT™2)", 1<r <7 (4.9)

This assumption enables flexibility in defining the state-independent perturbations,
in the sense that it does not require that the random variables be centred or i.i.d.
(Lie et al., 2019). It also means that each Eﬁ could follow a different probability
distribution, with the only requirement being that they share a common maximal
bound on their absolute moments with respect to the norm. Note that we assume
AT < 1 without loss of generality here, so that for increasing ¢, the perturbations
get smaller and smaller. For AT > 1, we can simply take ¢ to be negative.

These assumptions will enable us to derive error bounds in the state-independent
and state-dependent cases (using sampling rules 2 and 4). The sampling rule 1 and

3 cases require an additional assumption.

Assumption 4.5 (Lipschitz exact flow Far). The flow map Far satisfies the

Lipschitz condition

[Far(u) = Far()| < Lrllu - o], (4.10)

for u,v € R? and constant Lz > 0.

4.2.1 State-independent perturbations

In this section, we derive error bounds for SParareal when using the state-independent
perturbations £F(UF) = ¢F.

Theorem 4.6 (Superlinear error bound for state-independent perturbations). Sup-
pose the SParareal scheme (4.1) with £¢(UY) = €~ satisfies Assumptions 4.1, 4.2,
4.3, and 4.4. Then, the mean-square error (4.3) of the solution to the nonlinear
ODE system (2.1) at iteration k and time t, satisfies

k—2n—(j+1)
ek < A’“Z(“’Z)BMAZ Z <€+]>AjBé,
7=0

Jor 2 <k <n <N and constants A = CFAT?12(2+ AT), B = LE(1 + 2AT),
A = C2AT?* Y24+ AT 1), and D = Aé°

69

Chapter 4. SParareal II: error bound analysis

Proof. Using (4.1d), that Far is the exact solver (4.5), and adding and subtracting
Gar(u(ty)), we see that

enii = E[|lFar(u(tn)) — (Gar (U3 + Far(Uy) = Gar(Uy) + €,(Uy)) £ Gar(u(ta))|’]
= E[|W: + W2 + Ws]?],

where Wy, Ws, and W3 are given by

W1 = Far(u(ts)) — Gar(u(ty)) — (Far(UF) — Gar(U))),
= Gar(u(ty)) — Gap(UF),
W3 = —¢F.

Then, using the triangle inequality and (D.1) for the cross terms (Engblom, 2009,
Sec. 4.2), we obtain

b Q407 + S HE[IWa] + (L + 61 + 65 HE[|[Wal[?] + (1 + 82 + 65)E[||W3]|?]. (4.11)

Using (4.7), we can bound
E[|W1 %] < C2AT?PHD ek (4.12)
Applying the Lipschitz condition (4.8), we obtain
E[[|Wa?] < Lgep*. (4.13)
Using (4.9) with r = 2, we obtain
E[||Ws|%] < C3AT?+, (4.14)

Plugging (4.12)—(4.14) into (4.11) and choosing d; = AT, 2 = 1, and 63 = AT!,

we obtain the double recursion
eflﬂ Aef + Bel™ + A, el <D+ Bel, (4.15)

where A = CFAT?PT2(2+ AT™1), B = LE(1 +2AT), A = C3AT?1T1 (24 AT 1),
and D = Aé°. Solving (4.15) using the generating function method in Lemma D.3,

we obtain the result. O

One can make alternative choices for d1, do2, and d3, however, the choices given
in the proof above seem to yield the tightest error bounds. If we were to maximise

(4.15) over n, we obtain the following linear error bound in the case that B < 1, i.e.
Lg < (14 2AT)1/2,

70

4.2. Error bound analysis

Corollary 4.7 (Linear error bound for state-independent perturbations). Suppose
the SParareal scheme (4.1) with €X(UF) = €~ satisfies Assumptions 4.1, 4.2, 4.8,
and 4.4. Then, the mazimal mean-square error (4.4) of the solution to the nonlinear
ODE system (2.1) at iteration k satisfies

A k—1 A k—2 A J
©S\1°B +1—Bj:0 —5) Y)

Jor 2 <k < N and constants A = CFAT?*2(2+ AT™1), B = LE(1+ 2AT), and
A = C2AT?H1 (2 + ATY).

Proof. Following the proof of Theorem 4.6, we maximise (4.15) over n to obtain
eFHl < Aek 4+ A, (4.16)

where

~ A ~ A
A—ﬁ and A—ﬁ

1 we obtain the desired result. [

Solving recursion (4.16) with initial condition é
Remark 4.8. The bounds in Theorem 4.6 and Corollary 4.7 hold for 2 < k <n < N
due to the design of the SParareal scheme. We can recover the bound for iteration
k =1 (which is deterministic) by solving the second recursion in (4.15) with initial

value e} = 0 such that
n—2
er, <AY B, 1<n<N. (4.17)
i=0

For the case when k = n, the numerical error is zero, as Far will have propagated
the exact initial condition at ¢y forward k times without any perturbations, just like

Parareal.

Remark 4.9. The bound in Theorem 4.6 (similarly for Corollary 4.7) can be written

as
ek < Cpp max{ATEPTVE AT} (4.18)

where C, , is a function of n and k. Assuming AT < 1 and that Cj, , is non-increasing
in k, the accuracy of SParareal should increase with each iteration proportional to
the local truncation error of G (i.e. the term AT@P+Dk) up until the errors induced
by the perturbations (i.e. AT?7) become dominant. We illustrate this property

numerically in Section 4.3.

71

Chapter 4. SParareal II: error bound analysis

Remark 4.10. As AT — 0, both error bounds go to zero as expected, as can be
seen clearly in (4.18). The intuition being that as AT — 0, the local truncation error

of Gar goes to zero, i.e. it ‘becomes’ the exact flow map Far, see (4.7).

Remark 4.11. If we send ¢ — oo, the second moments of the random variables vanish
and we recover the classic Parareal scheme. This can be seen in both Theorem 4.6
and Corollary 4.7, where A vanishes as ¢ — 0o, leading to bounds similar to those
for classic Parareal. These bounds are not identical to those calculated by Gander
and Vandewalle (2007), Gander and Hairer (2008), and Gander et al. (2022) because

we are working with the mean-square error, not the (mean) absolute error.

Remark 4.12. If we additionally assume that the random variables Sf{ are centred,
i.e. E[¢¥] = 0, and work in the 2-norm, i.e. ||ul3 = (w,u) = S-% u2, in the proof of

Theorem 4.6, we can write (4.11) as

b] < (L4 67 HE[WP] + (1 + 60)E[|Wall*] + E[||Ws| %]
+ 2E[(W1, W3)| + 2E[(Wa, W3)],

where the final two terms are equal to zero by independence of Wi and Wy with
W3 and using the fact that each &* is centred. Continuing the proof, we obtain
the same bounds for Theorem 4.6 and Corollary 4.7 with slightly altered constants
A=CIAT**2(1+ AT 1), B=Lg(1+ AT), A = C3AT?"! and D = Aé°.

4.2.2 State-dependent perturbations (sampling rules)

We now use the previous results to derive the corresponding error bounds for the

state-dependent sampling rules defined in Table 4.1.

Corollary 4.13 (Linear error bound for state-dependent sampling rules 2 and 4).
Suppose the SParareal scheme (4.1) satisfies Assumptions 4.1, 4.2, and 4.3, with
ER(UF) defined using sampling rule 2 or 4. Then, the mazimal mean-square error
(4.4) of the solution to the nonlinear ODE system (2.1) at iteration k satisfies

k
0 A+ AL+ /(A4 A2 +4A5(1 - B)

~k <
¢ 2(1— B) ’

if B<1,

Jor 2 < k < N and constants A = C;AT*12(2 + ATY), B = LE(1 + 2AT),
Ay = CTAT#P2LE(14+ ATY), and Ay = CFAT?*PT2LE(1 + AT).

Proof for sampling rule 2. The proof follows in the same fashion as Theorem 4.6.

Instead of using the bound (4.14), we obtain, using (4.2) and applying (4.7),

E[|Ws]*] < CPAT*PHVE[|lay — Uy|1?). (4.19)

72

4.2. Error bound analysis

Substituting in a* for sampling rule 2 (Table 4.1) we get

CIAT*PHIE]||ok o 2k
AT PHOE]|| ok |I2E[| 2512
ATXPHY 2E[|UE_ | — UEL)2).

E[||W3]%] <
<O
< C?

The second inequality follows by Cauchy-Schwarz and independence of ¥ and 2.
The third follows by plugging in o¥, applying (4.8), and noting that E[||z¥||?] = 1.
Next, we add and subtract wu(¢,—1) inside the expectation and then apply (D.1),

with § = AT, to get
E[|W3]|?] < CIAT*PHOLZ((1+ AT Vel + (1+ AT)ek7Y). (4.20)
Using the new bound for E[||W3]|?] in (4.11), we obtain the double recurrence

eﬁﬂ < Aek + Beftt 4 Ajel |+ Agel Tl (4.21)

where A = CFAT?12(2+ AT 1), B = LF(1+2AT), Ay = CFAT*PP2LE(1+ AT),
and Ay = CFAT?* T2 LZ(1+ AT). Maximising over n, we obtain

Ml < Aek + BeF1, (4.22)
where
T A+ A 5 Ao
A= T B and B_l—B'

Recursion (4.22) can be solved using Lemma D.4, resulting in the desired bound. [J

Proof for sampling rule 4. The proof follows in the same way as the proof for
sampling rule 2, except that E[||v/3(2wk — 1)||?] = 1 is used in place of E[||2¥||?] = 1.
O

Corollary 4.14 (Linear error bound for state-dependent sampling rules 1 and 3).
Suppose the SParareal scheme (4.1) satisfies Assumptions 4.1, 4.2, 4.3, and 4.5, with
fﬁ(Uff) defined using sampling rule 1 or 3. Then, the maximal mean-square error
(4.4) of the solution to the nonlinear ODE system (2.1) at iteration k satisfies

k
A+ A +A A+ A +A3)2+4M,(1 - B
oo | AT AT 3+ V(A4 A1+ Ag)? + 4A() i B<l
2(1— B)
Jor 2 < k < N and constants A = CFAT*12(2 + AT1), B = LZ(1 + 2AT),
Ay = 2CFAT*PHP2LE(1+ AT 1), Ay = 20T AT*PT2(LE(1+ AT) + 2L%), and A =
AC2AT? 2,

73

Chapter 4. SParareal II: error bound analysis

Proof for sampling rule 1. The proof follows in the same fashion as Corollary 4.13.

Substituting ok for sampling rule 1 (Table 4.1) in (4.19), we get

E[|[Ws|*] < CEAT*PHVE[| Far(Uy—1) — Uy + oy, 0 2]
2CEAT*PHD (E[|| Far(Uy~1) — UplPl +Ellloy, 0 2)1%]). (4.23)

Ist \Trerm 2nd Term

<
<

The second inequality follows by applying (D.1) with § = 1. To bound the first term
in (4.23), we add and subtract Far(u(ty,—1)) inside the expectation and apply (D.1)

again with 6 = 1, obtaining

Lst Term < 2(E[[|Far(U,~;) — Far(u(te-0))|*] + Ell|Far (w(te-1)) — Uy |1%)

S)

NN

The second inequality follows by applying the Lipschitz condition (4.10) and recalling
that Far is the exact solver (4.5). The second term in (4.23) can be bounded as in
(4.20) in Corollary 4.13,

2nd Term < LZ((1+ AT ek | + (1 + AT)el 7).
Combining both terms in (4.23), we obtain
E[||Ws]*] < Avepy + Azey Ty + Asep,

where Ay = 202AT?+2L2(1 + AT™Y), Ay = 203AT?+2(L(1 + AT) + 2L%), and
A3 = 4C2AT**2. Using the new bound for E[[|W3]?] in (4.11), we obtain the

following recurrence

e’:jrll < (A4 A3)el + Bef L 4 AjeF |+ AgeF! (4.24)

n—1°

where A = CfAT?P2(2+ AT ') and B = LZ(1 4 2AT). Maximising over n, we

obtain

Ml < Aék + Bé 1 (4.25)
where
~ A+ A1 + A3 ~ A2
A=—"—_"° d B= .
1-B an 1-B

Recursion (4.25) can be solved using Lemma D.4, resulting in the desired bound. [J

Proof for sampling rule 3. The proof follows in a similar fashion to the proof for
sampling rule 1, with E[||v/3(2wk — 1)||?] = 1 being used in place of E[||z%(?] = 1. O

74

4.3. Numerical experiments

Remark 4.15. In Section 4.3, we can observe the behaviour of e£ (not just é¥) for
each of the sampling rules by solving the recursions (4.21) and (4.24) numerically.
We do this by replacing the inequality with an equality, i.e. upper bounding the error

estimate.

4.3 Numerical experiments

Here, we present some experiments to compare the theoretical bounds derived in

Section 4.2 with the errors generated by running SParareal numerically.

4.3.1 System of linear ODEs
In the following experiments, we solve the linear system

du
5 = Qu over te[0,7], with wu(0)= u?, (4.26)
where Q € R¥?, This system has the exact solution u(t) = u%?*, where %t =
> 20(Q1t)'/i! is the matrix exponential.

First, we examine the superlinear and linear bounds derived in Theorem 4.6 and
Corollary 4.7, respectively, by running SParareal numerically with state-independent

Gaussian perturbations
¢F ~ N(0, AT?H1T,), g > 0. (4.27)

We solve (4.26) with d = 100 and T = 2, discretising the time interval into N = 20
time slices so that AT = 0.1. We construct the matrix of coefficients () such that

10°

10°

% 10710

10'15

10-20

e — 1 ‘ !
10 0 2 4 6 8 10 12 14 16 180 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
k k .

() g =0 (b) =5 (c) ¢ =10

Figure 4.1: Theoretical bounds vs. numerical errors for SParareal applied to the
linear system of ODEs (4.26) (with B < 1) using state-independent Gaussian perturba-
tions (4.27). The superlinear bound (Theorem 4.6) is given in blue, the linear bound
(Corollary 4.7) in red, the numerical error in black, and AT??*! in dashed black. Each
plot corresponds to a different level of Gaussian noise: (a) ¢ = 0, (b) ¢ = 5, and (¢)
q = 10. Numerical errors were calculated by averaging over 500 independent realisations
of SParareal.

75

Chapter 4. SParareal II: error bound analysis

10°

10° .% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g

10°

® g0

10'15

10-20

-25
0% 2 4 6 8 10 12 14 16 180 2 4 6 8 10 12 14 16 180 2 4 6 8 10 12 14 16 18
k k k

(@) ¢g=0 (b) ¢=5 (c) ¢=10

Figure 4.2: Theoretical bounds vs. numerical errors for SParareal applied to the linear
system of ODEs (4.26) (with B > 1) using state-independent Gaussian perturbations
(4.27). The superlinear bound (Theorem 4.6) is given in blue, the numerical error
in black, and AT2¢*+! in dashed black. Each plot corresponds to a different level of
Gaussian noise: (a) ¢ =0, (b) ¢ =5, and (c) ¢ = 10. Numerical errors were calculated
by averaging over 500 independent realisations of SParareal.

B < 1 and also select a fixed initial condition u® € [~5,5]?. We use the exact
solver Far(u) = ue®?T and the forward Euler method Gar(u) = (Ig + QAT)u.
In Figure 4.1, we plot the maximal theoretical bounds é* and numerical errors of
SParareal as a function of k for different values of ¢ when B < 1. These results
illustrate how the errors decrease as k increases (except when ¢ = 0), up until the
error induced by the perturbations become dominant—exactly the effect described
in Remark 4.9. For all considered values of ¢, the error for £ > 2 has a hard lower
bound of O(AT?*1) i.e. the error cannot go below the second moments of the
perturbations (indicated by the dashed black line in each case). By altering @ and

running the same experiment, we see similar effects in the B > 1 case, see Figure 4.2.

100 L

10—10 L

d moment of &8(U¥)

10-20 L

rgest secon

a

:° 10-30 L

I

SR4 |
10740 . . . 1
0

Figure 4.3: Largest second moments (over n) of £€¥(UF) for the sampling rules 1 to 4
(light blue, brown, purple, and green respectively) and the Gaussian perturbations (4.27)
for ¢ € {0,5,10} (dashed black), plotted against iteration number k. Second moments
for the sampling rules were calculated by averaging over 500 independent realisations of
SParareal.

76

4.3. Numerical experiments

10° ‘ : ; : ‘ : :
> —#— Linear bound —*— Linear bound
—»— “Numerical” bound 100 F —— “Numerical” bound
—&— Numerical error (SR2) —E&— Numerical error (SR1)
Numerical error (SR4) - —«— -Numerical error (SR3)
10° \\
107
-10
10 1010}
10715 101 ‘ : : : ‘ : : :
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 i 100 12 14 16 18
k ¢
(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3

Figure 4.4: Theoretical bounds vs. numerical errors for SParareal applied to the linear
system of ODEs (4.26) (with B < 1) using the state-dependent sampling rules. (a)
The linear bound in Corollary 4.13 is shown in red, the numerically solved recursion
(4.21) in blue, and the numerical errors for sampling rules 2 and 4 in brown and green,
respectively. (b) The linear bound in Corollary 4.14 is shown in red, the numerically
solved recursion (4.24) in blue, and the numerical errors for sampling rules 1 and 3 in
light blue and purple, respectively. Numerical errors were calculated by averaging over
500 independent realisations of SParareal.

It can be seen that, regardless of B, using the state-independent perturbations
may not be optimal because of the lower bound forced upon the errors. If they are
to be used, then they would need to be chosen such that the second moments are
smaller than the accuracy of the solutions sought. This approach, however, may not
yield accelerated convergence over the classic Parareal scheme. To avoid this (and
the lower bound on accuracy), the perturbations need to be state-dependent and
therefore able to adapt, i.e. the second moments need to decrease with k and scale
with n. In Figure 4.3, we illustrate how the second moments of the perturbations
used in the state-dependent sampling rules decrease with k£ throughout the SParareal
simulation, comparing these to the fixed second moments of the Gaussians (4.27)
for each ¢ € {0,5,10} (dashed lines). Using the sampling rules enables SParareal
to sample from probability distributions that begin to “contract” around the exact
solution states as the simulation progresses, i.e. as k increases. This results in high
solution accuracy in very few iterations, as will be shown in Figure 4.4.

It should be noted that we could have also chosen a different distribution other
than the Gaussian from which to sample each state-independent £*, as long as As-
sumption 4.4 is satisfied. For example, choosing uniformly distributed perturbations
EF ~ U[—/3AT a3, \/§AT‘1+%]d yielded almost identical results (not shown).

Next, we plot the linear bounds for perturbations defined by the sampling rules,
i.e. Corollary 4.13 and Corollary 4.14, against the corresponding numerical errors in
Figure 4.4 (for the B < 1 problem). We observe that the linear bounds are not that

tight due to the maximisation over n required to derive them. However, by solving

7

Chapter 4. SParareal II: error bound analysis

10-5 L

Stopping tolerance e

1015
2

Figure 4.5: Expected number of iterations k taken to reach stopping tolerance e
(2.10) for SParareal applied to the linear system (4.26) (with B < 1). Results plotted
using SParareal with each sampling rule (see legend) and the Gaussian perturbations
(4.27) for g € {0,5,10,25} (dashed black lines). E[k] calculated by averaging k over 500
independent realisations of SParareal.

recursions (4.21) and (4.24) numerically (recall Remark 4.15), we observe a tighter
bound on the error. All that is required to calculate these numerical bounds are the
errors at the ‘zeroth’ iteration (obtained from SParareal itself by just running G),
errors at the first iteration (recall (4.17)) and the constants C; and Lg. Note that the
numerical errors for sampling rules 2/4 and 1/3 overlap because the perturbations
used in each scheme have almost identical second moments (recall Figure 4.3).

In Figure 4.5, we compare the performance of the state-independent and -
dependent perturbations by plotting the expected number of iterations E[k] taken to
reach a pre-defined stopping tolerance ¢, recall (2.10). We observe that, on average,
the sampling rules reach tolerance in fewer iterations than the state-independent
perturbations. The sampling rules also outperform classic Parareal, which can be
observed by comparing them to the state-independent perturbations for ¢ = 25,
for which perturbations are so small that SParareal is practically deterministic (i.e.
Parareal). Recall that reducing k by even a few iterations can significantly increase

parallel speedup.

4.3.2 Scalar nonlinear ODE

In the following experiments, we solve the scalar nonlinear equation

d

d—i‘ = VW2 +2 over te|-1,1, with u(~1)=5. (4.28)
This equation has exact solution u(t) = v/2sinh(t 4+ 1 4 sinh™1(5/2)). We solve
(4.28) using SParareal with N = 20 time slices (thus AT = 0.1), exact solver
Far(u) = V2sinh(AT + sinh ™ (u/+/2)), and forward Euler Gar = u + ATVu2 + 2.

78

4.3. Numerical experiments

—— Superlinear bound] |
—e— Numerical error | |

% 1070

10»15

1070

25 " L L
10 10 12 14 160 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 16

(b) =5 (c) =10

0 2 4 6 8
k
(a) ¢g=1

Figure 4.6: Theoretical bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using state-independent Gaussian pertur-
bations (4.27). The superlinear bound (Theorem 4.6) is given in blue, the numerical
error in black, and AT29*! in dashed black. Each plot corresponds to a different level of
Gaussian noise: (a) ¢ =1, (b) ¢ =5, and (c) ¢ = 10. Numerical errors were calculated
by averaging over 500 independent realisations of SParareal.

Figure 4.6 illustrates a good match between the superlinear bound (Theorem 4.6,
B > 1) and the numerical errors when using SParareal and the Gaussian perturbations
(4.27). One can see that at k = 0 the error is quite large, O(10'), and so even when
using the forward Euler method for Gap, the SParareal error decreases rapidly (for
sufficiently large ¢). Given the bounds in Corollary 4.13 and Corollary 4.14 only hold
when B < 1, we again solve the respective recursions (4.21) and (4.24) numerically,
obtaining a good match between theory and numerics when using the sampling rules

(see Figure 4.7). Figure 4.8 illustrates the performance of the state-independent

C Nl o ey
100R ‘ —— Nume_rlml bound 100 —»— “Numerical” bound
—&—Numerical error (SR2) —6— Numerical error (SR1)
Numerical error (SR4) - - -Numerical error (SR3)
100} 10°
1070} .10t
101° 108
1020} 10720
1025 1 { i i 1025 | ! | | . .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

k k
(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3
Figure 4.7: “Numerical” bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using the state-dependent sampling rules. (a)
The numerically solved recursion (4.21) is shown in blue and the numerical errors for
sampling rules 2 and 4 in brown and green, respectively. (b) The numerically solved
recursion (4.24) is shown in blue and the numerical errors for sampling rules 1 and 3 in
light blue and purple, respectively. Numerical errors were calculated by averaging over
500 independent realisations of SParareal.

79

Chapter 4. SParareal II: error bound analysis

10%8

10-5 L

Stopping tolerance e

1015
2 20

Figure 4.8: Expected number of iterations k taken to reach stopping tolerance ¢ (2.10)
for SParareal applied to the nonlinear scalar ODE (4.28) (with B > 1). Results plotted
using SParareal with each sampling rule (see legend) and the Gaussian perturbations
(4.27) for g € {0,5,10,25} (dashed black lines). E[k] calculated by averaging k over 500
independent realisations of SParareal.

perturbations and the sampling rules for varying stopping tolerances. As it did for
the system of linear ODEs, using SParareal with state-dependent perturbations is
more effective than with the state-independent perturbations, regardless of the chosen
value of ¢ for the Gaussian perturbations (recall that Parareal can be recovered when

choosing g > 25).

4.4 Discussion and further work

The SParareal algorithm solves IVPs by perturbing solutions from the classic (de-
terministic) Parareal scheme using (in this version) a single sample drawn from
pre-specified probability distributions. This sampling-based time-parallel scheme
generates stochastic solutions to the IVP. In this chapter, we analysed the error
of these stochastic numerical solutions by deriving mean-square error bounds for
SParareal, equipped with different types of perturbations.

In Section 4.2, we make assumptions about the fine and coarse numerical integra-
tors used by SParareal, namely that Far returns the exact solution to the ODE and
that Gar has uniform local truncation error and satisfies a Lipschitz condition. Error
bounds were then derived for two types of random perturbation, one in which the ran-
dom variables do not depend on the current state of the system (state-independent)
and one in which they do (state-dependent). In the state-independent case, where
specific upper bounds were assumed on the second moments of the random variables,
we derived both superlinear (Theorem 4.6) and linear (Corollary 4.7) bounds on the
mean-square error. In the state-dependent case, where a number different pertur-
bations were defined according to sampling rules (Section 4.1.2), we derived linear

bounds on the errors (see Corollaries 4.13 and 4.14).

80

4.4. Discussion and further work

In Section 4.3, we illustrate these bounds, comparing them to the errors generated
by running SParareal numerically. We demonstrate a good match between the
theoretical bounds and numerical errors for systems of linear ODEs and a scalar
nonlinear ODE. Using the state-independent perturbations, we observed tight bounds
with respect to the numerical errors. However, because these perturbations do not
adapt with iteration k& and time step n, their practical usage faces limitations.
They encode a hard lower bound on solution accuracy (of the order of the size of
the second moments, see Remark 4.9) and more iterations were typically required
to reach stopping tolerance for larger perturbations. Instead, the sampling rules,
shown to adapt with both k and n, did not suffer from these issues, as was previously
discussed in Chapter 3. The derivation of the linear bounds for the sampling rules did,
however, require multiple applications of the Peter-Paul inequality (Appendix D.1),
resulting in less tight bounds compared to those found in the state-independent
case. Tighter bounds were observed by solving the double recursions (4.21) and
(4.24) numerically. In addition, these linear bounds required the constant B to be
less than one (restricting its use to problems where the Lipschitz constant for Gap
is smaller than one) and that Far be Lipschitz continuous for sampling rules 1
and 3 (an additional restriction). In the future, it would be interesting to see if
these restrictions can be avoided or whether one can derive bounds by relaxing the
Lipschitz assumptions.

As HPC technology advances, the demand for faster and more accurate time-
parallel integration methods will increase. With SParareal, we have seen that
introducing local perturbations into an existing time-parallel scheme can enable
convergence in fewer iterations (using the sampling rules) and can, on average, result
in higher accuracy solutions (refer back to numerical experiments in Sections 3.3
and 4.3). Following multiple realisations of SParareal, these solutions can form a
distribution over the exact solution, the accuracy of which can be estimated using the
error bounds in this chapter. Further work is required to investigate whether similar
bounds can be derived for the original SParareal scheme (where M samples drawn
instead of just one) which is able to locate solutions with increasing accuracy and
numerical speedup when increasing numbers of samples are taken. In addition, in
most practical applications, the exact flow map Far is unknown and so it would be
advantageous to investigate what happens when one relaxes this assumption, taking
Far to be a numerical flow map.

Having now shown rigorously that solutions from SParareal are accurate, we
conclude our work on SParareal. A discussion on its significance and impact will be
made in Chapter 7. We now move on to discuss GParareal, a learning-based time
parallel algorithm whereby we seek to make use of all solution data generated by

Parareal in a Bayesian manner.

81

Chapter 5

GParareal I: a learning-based

time-parallel algorithm

Overview

In this chapter we propose GParareal, a learning-based time-parallel algorithm that
solves IVPs by inferring the (expensive) multi-fidelity correction term in Parareal,
i.e. the difference between fine and coarse solutions, using a Gaussian process (GP)
emulator. In SParareal, we showed that we could use the fine and coarse solution
data at a given iteration to construct probability distributions for sampling, obtaining
better corrections through increased sampling and propagation. We now approach the
problem from a Bayesian viewpoint with the aim of using the acquisition data, i.e. the
coarse and fine solutions from all prior iterations, to infer better corrections. We use
these corrections in a slightly modified PC update, whereby the coarse solver makes
rapid low-accuracy predictions (just like Parareal/SParareal) that are subsequently
refined using a correction obtained by querying the “trained” GP emulator. As with
SParareal, the hope is that the corrections provided by the GP emulator (trained
using the acquisition data) are more accurate than those that would come from the

standard Parareal correction.

We start in Section 5.1 by giving an overview of what a GP emulator is, how
it works, and why they are extremely useful for emulating functions when one
only has access to limited (expensive) data. We then provide a high level overview
of the idea behind GParareal and motivate why using learning-based methods is
beneficial for PinT simulations. Following this, we briefly review similar PinT
algorithms that have made use of learning-based methods both inside and outside of
the Parareal framework. In Section 5.2, we derive GParareal and explain, in detail,
how the GP is conditioned on the acquisition data, how the GP hyperparameters,
and provide expressions for the computational complexity. Using a result on GP

posterior consistency and the assumptions defined in Chapter 4, we will also derive

82

5.1. Motivation and background

an error bound for the GParareal solutions at a given iteration, showing that errors
are proportional to the accuracy of the emulator.

In Section 5.3, we perform numerical experiments on HPC facilities to compare
and contrast the performance of GParareal and Parareal. We demonstrate good
performance in terms of convergence, wallclock time, and solution accuracy on a
number of low-dimensional nonlinear ODE problems using just acquisition data.
Furthermore, we demonstrate how the GP emulator captures variability in the
correction term, enabling convergence in cases where the coarse solver is too inaccurate
for Parareal. We also show that GParareal has the advantage of being able to use
archives of “legacy data”, e.g. solutions from prior runs of GParareal using different
initial conditions, to further accelerate convergence of the method. Strong scaling
experiments confirm that our theoretical wallclock time and speedup estimates for
GParareal (and Parareal) are valid. In addition, these experiments highlight that
the cost of training the emulator must be small with respect to the fine solver in
order for full speedup potential to be realised.

In Section 5.4, we discuss a modification to GParareal that can help with slow
convergence in situations where the emulator is insufficiently well-trained to locate
a solution in a small number of iterations. We show how one can introduce a
“Parareal fallback correction” by placing a switching tolerance on the GP posterior
standard deviations. This allows GParareal to automatically switch between taking
corrections from the GP emulator (when the variance is below tolerance) and the
standard Parareal correction (when variance is high and therefore the posterior mean
of the emulator is poor). We examine the feasibility of using the switching condition
with numerical experiments on the Lorenz96 system. We conclude in Section 5.5,
discussing the benefits, drawbacks, and open questions surrounding GParareal—some

of which we explore in Chapter 6.

5.1 Motivation and background

As before, we seek the same high resolution numerical solutions to (2.1) as expressed
in (2.3), except now we solve for an autonomous scalar ODE, i.e. f(¢,u(t)) = f(u(t)).
This is just to simplify the explanation of GParareal—we will describe the extension
to the full nonautonomous multivariate case in Section 5.2.5. As with Parareal and
SParareal, we will denote the iteratively improved approximations from GParareal
as UF (as before, U} = Uy = u" Vk > 0).

5.1.1 Gaussian process emulation

Emulators, also known as surrogate models, are statistical models that can approxi-
mate the output of deterministic black-box simulators (O’Hagan, 2006). A simulator

can be regarded as an expensive-to-evaluate function g: R — R that takes an input

83

Chapter 5. GParareal I: a learning-based time-parallel algorithm

x € R and produces an output y = g(z), often taking seconds, minutes, or hours
to generate such an output. Emulators are designed to be able to rapidly infer (i.e.
generate a posterior probability distribution over) the value of g(z’) at any input
location 2’ € R without evaluating g(z’) itself. They do so by conditioning a prior
distribution over g on a limited set of simulator runs {(x;, yj)}?zl, where y; = g(z;).
This set is often referred to as the set of design points or the training set and can
often be generated in parallel.

GP emulators are a particular type of surrogate model that use multivariate Gaus-
sian distributions to infer g(z’) given a set of training data {(z;, yj)}le (O’Hagan,
1978; Rasmussen and Williams, 2006). They are used almost ubiquitously in a
number of different settings including Bayesian optimisation (Murphy, 2023, Sec.
6.8), Tsunami modelling (Beck and Guillas, 2016; Liu and Guillas, 2017), and galaxy
dynamics (Gration and Wilkinson, 2019), to name but a few. Suppose we wish to use
a GP emulator to infer the (a priori unknown) function g(z) = cos(x) with a small
training set. Firstly, we define a GP as a collection of random variables, any finite
subset of which has a joint Gaussian distribution (Rasmussen, 2004). Therefore, we

can define a GP prior over g as
g~ GP(m, k), (5.1)

meaning that g is distributed as a GP with mean function m: R — R and covariance
kernel x: R x R — R. To visualise what this means, consider a set of input values
x € R/, which yield the corresponding vector of means u(x) = (m(xj));:1J and
the covariance matrix K(x,z) = (k(x;,x}))i j=1,.,7. Suppose we choose m(z) =0

and use the square exponential (SE) kernel

_ 2 (zi — ;)
k(xi,xj) = 0 exp g) for some x;,z; € R, (5.2)

with input and output length scales £ = 1 and o2 = 0.75, respectively'. The prior

from (5.1) can now be written in finite dimensional form
g(@) ~ N (u(z), K(z,2)), (5-3)

which we illustrate in Figure 5.1(a) and from which we can draw samples, see
Figure 5.1(b).
Clearly, the prior (and the samples drawn) do not resemble g(x) = cos(x).

Suppose we now have access to D = 5 evaluations of g—see Figure 5.1(c). We can

!These parameters, often referred to as hyperparameters, are specified a priori here, however,
they are usually optimised with respect to the training dataset to obtain a more accurate GP
posterior distribution—something we will discuss how to do in Section 5.2.2.

84

5.1. Motivation and background

T 2.5

True function g(z) [Prior uncertainty (95%)
Prior mean ———Samples from prior

True function g(z) [Prior uncertainty (95%)
Prior mean

2.5 - 2.5
6 4 2 0 2 4 6 6 4 2 0 2 4 6
x x
(a) (b)
2.5 2.5~

True function g(z) [Posterior uncertainty (95%)

True function g(x) {777 Prior uncertainty (95%)
Posterior mean - Known values of g(z)

Prior mean - Known values of g(z)

(c) ()

Figure 5.1: Modelling the unknown function g(z) = cos(z) using a GP emulator. (a)
True unknown function g(z) (solid black) and the GP prior over g (5.3) with mean
(solid blue) and 95% confidence interval (light purple). (b) The same plot as (a) with
five samples (multicoloured) drawn from the GP prior. (¢) The GP prior, now plotted
with D = 5 evaluations {(z;,y;) le of g. (d) The GP posterior over g (5.4).

condition the prior (5.3) on these evaluations analytically? to obtain a Gaussian

posterior distribution over g(z’) at any input location z’ € R:

g(xl) | {ac,y} N_/\/’(/j(gg’),f{(gg”x’))’ (54)
with mean
pla!) = p(') +K (2!, @)K (2,2)] " (y — p(a) (5.5)
hn i
and variance
K a') = K@, 2') — K« 2)[K (2, 2) ' K (x,2). (5.6)

2To see how the expressions of the posterior mean and covariance are calculated, see Murphy
(2022, Sec. 3.2.3).

85

Chapter 5. GParareal I: a learning-based time-parallel algorithm

In Figure 5.1(d) we can see that the posterior mean now interpolates the training data
exactly and the posterior variance is zero at these locations. As we move away from
an observed value of g(z), the mean deviates from the true g(z) and the posterior
variance increases, telling us that the emulator is more uncertain about the value of
g(z) at unobserved locations.

The key reason for using an emulator to model g is that we can rapidly query
the posterior (5.4) at any 2’ € R without evaluating g(z') itself. The idea is that
the cost of inferring g(z’) (5.4) (which is proportional to the cost of inverting the
covariance matrix K (a,x)) should be much smaller than the cost of evaluating g(z').
In addition, GP emulators are flexible enough that one can choose any prior mean
and covariance functions based on known structure of the function being emulated.
For example, if we know the function is periodic (as we know g(x) = cos(x) is) then
we can prescribe this property within the mean/covariance functions—see Rasmussen
and Williams (2006, Chp. 4). One can of course emulate multivariate functions as
well (which we will need to do in GParareal) and for this one can use vector-valued
GP emulators (Alvarez et al., 2011). Next, we describe how we utilise a GP emulator

within the Parareal framework.

5.1.2 Our approach

In Parareal, we know that the PC (2.9c) updates the solutions U¥ using a correction
term based on information (from the solvers Far and Gar) calculated during the
previous iteration k — 1. In a Markovian-like manner, all fine/coarse information
about the solution obtained prior to iteration k — 1 is ignored by the PC, a feature
present in most Parareal-type algorithms and variants (Ait-Ameur et al., 2020; Dai
et al., 2013; Elwasif et al., 2011; Maday and Mula, 2020), including SParareal. As
mentioned before, the goal is to demonstrate that all of the fine and coarse solution
information accumulated up to iteration k, i.e. the acquisition data, can be exploited
to determine a solution in faster wallclock time than Parareal.

In GParareal, we propose the following update rule, again based on a coarse pre-
diction and multi-fidelity correction, that instead refines solutions using information

from the current iteration k, rather than k — 1:

Uqlf =]:AT(Urlj—l)
= (Far — Gar + Gar)(UF_))
= Gar(UF_)+ (Far — Gar)(UF_)) 1<k<n<N. (5.7)

prediction correction

If Urlf_l is known, the prediction term is rapidly calculable, however the correction is
not known explicitly without running Far at expensive cost. We propose using a GP

emulator to infer the correction term, which we know is computationally expensive

86

5.1. Motivation and background

to simulate due to the presence of the Far term. We can condition a GP prior
over Far — Gar on all previously obtained evaluations of Far and Gar to obtain
a Gaussian posterior distribution from which we can extract an explicit value and
carry out the refinement in (5.7).

The solutions generated by GParareal should converge to the exact solution
assuming the accuracy of the emulator increases as more acquisition data is obtained
each iteration. The hope is that the GP predictions should be more accurate than
those provided by Parareal. This approach could be particularly beneficial if one
wishes to fully understand and evaluate the dynamics of (2.1) by simulating solutions

0 or over different time intervals. Firstly, if one can obtain

for a range of initial values u
additional parallel speedup, generating such a sequence of independent simulations
becomes more computationally tractable in feasible time. Secondly, the legacy data,
i.e. batches of acquisition data accumulated between independent simulations, can
be used to inform future simulations by increasing the size of the dataset available
to the GP emulator prior to simulation. Being able to re-use (expensive) acquisition
or legacy data to integrate IVPs in parallel is not something, to the best of our

knowledge, that existing time-parallel algorithms can do.

5.1.3 Related work

As briefly mentioned in Chapter 1, learning-based methods have been previously
developed to solve IVPs in PN (Hennig et al., 2022). The first ODE filters used
GP regression® techniques to calculate a posterior probability distribution over the
solution to an IVP at any ¢ € [to,T]—recall Figure 1.4(b). They achieved this
by conditioning the GP on observation data, i.e. inexact solution and derivative
evaluations from the IVP, obtained sequentially in time. Since then, modern ODE
filters have moved away from GP regression methods, instead using Gauss-Markov
processes (Oksendal, 2013) that can make use of more computationally efficient
Kalman filters and Rauch-Tung-Striebel smoothers (Bosch et al., 2021; Sarkka, 2013;
Schober et al., 2019; Tronarp et al., 2019; Wenger et al., 2021). Even though such
methods are becoming computationally competitive (compared to classical methods)
(Kersting et al., 2020; Kramer et al., 2022), running them sequentially over large
time intervals or expensive vector fields is still a computationally intractable process.

While there has been some work on parallelising the implementation of Kalman
filters and smoothers (Sérkkd and Garcid-Ferndndez, 2021) as well as particle-based
smoothers (Corenflos et al., 2022), i.e. de-sequentialised Monte Carlo, it does not seem
as though these methods have yet been deployed within the ODE filter framework.
Although this would be of interest, we instead harness ideas from the early PN ODE

3GP regression models condition a GP prior using observations that contain uncertainty, i.e.
are corrupted by statistical noise (not necessarily Gaussian). GP emulators, on the other hand,
condition on observations that are assumed to have no uncertainty, i.e. are noise-free.

87

Chapter 5. GParareal I: a learning-based time-parallel algorithm

filters in a slightly different way by modelling the residual between solutions provided
by the deterministic fine and coarse solvers in Parareal rather than modelling the
solution to the IVP itself. This is mainly because the filters and smoothers used in
the PN ODE solvers handle time series data that arrives sequentially whereas the
acquisition data in Parareal, which arrives in batches each iteration, does not depend
on time. While the method proposed in this chapter will not return a probabilistic
solution to (2.1) like the sequential PN ODE filters do, we believe that it constitutes

a positive step in this direction.

Within the PinT field, the first work investigating whether acquisition data could
be used to improve solutions generated by the PC was Krylov-enhanced Parareal,
introduced by Gander and Petcu (2008). The idea was to construct a projection
operator, using a Krylov-subspace spanned by the PC solution set, to replace the
coarse solver—of which the accuracy should increase as more data is accumulated.
This variant was designed to deal with the slow convergence observed when solving
hyperbolic (non-diffusive) IVPs (Gander and Vandewalle, 2007; Ruprecht, 2018).
The Krylov subspace approach was shown to work well for a linear acoustic-advection
system by Ruprecht and Krause (2012) and was extended to work for nonlinear
problems (slightly outside the Parareal framework) by Cortial and Farhat (2009).
Rather than replacing the coarse solver and using the PC solution dataset, as the
aforementioned works do, we will make use of the fine and coarse solution dataset to
replace the correction term, which should hopefully be easier to model. In addition,
the (serial) cost incurred by constructing a new coarse solver grows as more acquisition
data is accumulated and is something we need to bear in mind when analysing the

computational complexity of GParareal.

To further resolve issues created by the coarse solver in Parareal (e.g. numerical
instabilities, accuracy, and slow convergence) work has begun on replacing the coarse
solver with neural networks (NNs). Yalla and Engquist (2018) use a NN to emulate
Far using (legacy) data obtained by propagating M training points (either randomly
selected or guided by an initial coarse solve) with Far (in parallel). Numerical
experiments show that linear systems can be simulated in one iteration (something
we will discuss further in Chapter 6) and nonlinear systems in fewer iterations than
Parareal (if M is sufficiently large) when they use the NN in place of Gar. These
results, however, make no mention of the computational costs (and the number of
processors) required to generate the training data or train the NN. Similar findings
are reported in Agboh et al. (2020) when applying the same methodology to IVPs
in robotic manipulation. In Nguyen and Tsai (2022), a NN is constructed to learn
a mapping from the coarse to the fine solution space and then used in place of
Gar. With the aim of solving wave equations, numerical results suggest that the
NNs trained using acquisition data (obtained throughout the simulation) were more

beneficial for faster convergence than pre-generated (legacy) data sampled randomly

88

5.1. Motivation and background

throughout the state space. On a similar but different track, it is worth mentioning
the work of Lee et al. (2022), in which Parareal is used to speedup the training process
of a NN, something that could be worth considering in the aforementioned works
where the (almost certainly significant) serial training costs were ignored. These
findings demonstrate that learning-based methods can indeed be used to accelerate
the convergence of Parareal, however, much work still needs to be done to assess the
cost of training, optimising, and tuning the NNs and determine whether they are

actually viable in large-scale PinT simulations.

Also worth briefly mentioning are the use of physics-informed neural networks
(PINNSs) within the PinT framework. PINNs approximate the solution to IVPs by min-
imising a loss function comprised of the equations being solved, the initial /boundary
conditions, and any other known information of the system (e.g. conservation laws).
Training data is sampled randomly throughout the domain, however, the choice of
these data points, the NN architecture, and optimisation process has a large impact
on performance and accuracy—see Cuomo et al. (2022) for an overview. So far,
PINNs have been used to solve a number of time-dependent PDE problems and are
known to become prohibitively expensive if one tries to solve over a sufficiently long
time interval using large amounts of training data. Meng et al. (2020) develop a
Parareal PINN that parallelises a PINN solver, using smaller PINNs as the coarse
and fine solvers within the classic Parareal algorithm. The results are encouraging,
however, the test problems presented are very simple, converging in one or two
Parareal iterations and it is assumed that simplified ODEs/PDEs are available for
the coarse solver—which is not always the case in practical applications. Whereas
the Parareal PINN scheme uses Parareal to parallelise a PINN solver, we are more
interested in how PINNs could be used to accelerate convergence of the Parareal
scheme itself. In Ibrahim et al. (2023), a PINN is used in place of the coarse solver,
with the idea being that a pre-trained PINN is faster to evaluate (over short time
intervals) and provides more accurate solutions compared to a standard coarse solver.
Whilst reporting runtimes faster than Parareal, on the order of milliseconds, the
(offline) pre-training time of the PINN (which took 30 minutes using O(10°) training
points) was not accounted for (as in the previous studies). This is, however, encour-
aging as the expensive pre-training could be justified in cases where one wishes to
solve a given IVP for many different initial conditions, saving overall computational

time—though this warrants further numerical investigation.

Most of the approaches discussed have replaced the coarse solver with a learning-
based method trained using the fine or PC solution data, with the aim of making
the coarse predictions in Parareal more accurate. This amounts to trying to learn
the nonlinear vector field generated by the fine solver Far, which we expect to be
more difficult (and perhaps requires more solution data) than trying to emulate

the correction Far — Gar. This is because we expect the output length scale of

89

Chapter 5. GParareal I: a learning-based time-parallel algorithm

Far — Gar to be small, on the order of the difference between the local truncation
error of each solver, and therefore to vary smoothly with the input states. As reported
by Nguyen and Tsai (2022), we expect acquisition data to be most effective in training
the GP emulator, however, we will also investigate the effect of using legacy data
from prior simulations and random sampling on convergence and speedup. We will
also account for the serial costs that training and optimising the GP emulator will
have on the wallclock time and parallel speedup estimates of GParareal. Using the
GP emulator will also allow us to derive an error bound for GParareal solutions,
something more difficult to do when working with NNs which depend on the choices

of the numbers of neurons, layers, activation functions, and so on.

5.2 The algorithm

We are now ready to explain how GParareal works.

5.2.1 How it works

Before solving (2.1), we define a GP prior over the unknown “correction function”
FAar — Gar just like we did in Section 5.1.1. This function maps an initial value
xn, € U at time t, to the residual difference between Far(zy) and Gar(x,) at time

tnt1- More formally, we write
FAT — GaT ~ GP(m, k), (5.8)

with mean function m: U — R and covariance kernel k: U xU — R. Given the vectors
x,x’ € U’, the corresponding mean vector is denoted pu(z) = (m(z;)) =0, s—1 and
the covariance matrix K(z,z') = (x(2i,7}))ij=0,.,7-1. The correction term is
expected to be small, on the order of the difference between the accuracy of Far
and Gar, hence we define a zero-mean process, i.e. m(x) =0 Vo € U. We are free to
select any appropriate covariance kernel based on any prior knowledge of the solution
to (2.1), e.g. regularity /periodicity. However, assuming we have no information a
priori to simulation, we will select the SE kernel (5.2) . The kernel hyperparameters
denoting the length scales ¢> and o2 are referred to collectively in the vector 8 and
need to be optimised during the simulation. Having initialised the GP emulator, the

algorithm proceeds as follows (see Algorithm 3 for pseudocode).

4Note that we did analyse the use of alternate Matern kernels for the IVPs tested, however, they
yielded significantly poorer performance, see Murphy (2022, Sec. 17.1.2).

90

5.2. The algorithm

Iteration £ =0

Firstly, run Gar sequentially from the exact initial value U, on a single processor,

to locate the coarse solutions

U% =Gar(U%_ ;) for m=1,...,N. (5.9)
Store these solutions in the vector x == (U, ..., Uj%fl)T for use in the GP emulator.

Iteration £ =1

Use Far to propagate the values in (5.9) on each time slice in parallel (using the N

processors) to obtain the following values at ¢,
Far(U2_y) for n=1,...,N. (5.10)

At this stage, we diverge from the Parareal method. Given x, store the values of
Far — Gar, using (5.9) and (5.10), in the vector

y = ((Far — Gar)(@n))) —o. n_1- (5.11)

At this point, the inputs « and evaluations y are used to optimise the kernel hyperpa-
rameters 6 via maximum likelihood estimation—see Section 5.2.2. Conditioning the
prior (5.8) on the acquisition data {x,y}, the GP posterior over (Far — Gar)(2'),

where 2’ € U is some initial value in the state space, is given by
(Far — Gar)(@) | {z,y} ~ N (i(a"), K (2, 2")), (5.12)

where fi(2') and K (a',2') are given by (5.5) and (5.6), respectively.

Now we wish to determine updated solutions U} at each time step. Given Far
has been run once, the exact solution is known at time t1. Specifically, at ty we know
U('f = Uy Vk > 0 and at t; we know U{“ =U; =]-"AT(U&) Vk > 1. At ts9, the exact
solution Uy = fAT(Ull) is unknown, hence we need to calculate its value without

running Far again. To do this, we re-write the exact solution using (5.7):

Ut = Gar(UD) + (Far — Gar)(UL). (5.13)
dicti ti
prediction correction

Both terms in (5.13) are initially unknown, however, the prediction can be calculated
rapidly at low computational cost while the correction can be inferred using the GP

posterior (5.12) with 2’ = U{. Therefore, we obtain a Gaussian distribution over the

91

Chapter 5. GParareal I: a learning-based time-parallel algorithm

u(t) — Far(Uy) Key
A'T o Gar(UD)
<¢>>_’_ i — Far(Up)
4 L T Far—Gan@d
— Gar(Up)
]/ / Loy
u0 ¢ <o N(gar(U) +u(U) K(ULUY)

—_—

U1

>
>

to 131 12 t3 t

Figure 5.2: Schematic of the first iteration of GParareal. The ‘exact’ solution over
[to, t3] is shown in black, with the first coarse and fine (parallel) runs given in yellow
and blue respectively. Solid bars represent the residual between these solutions (5.11).
The predictions, i.e. the second coarse runs, are shown in red and the corresponding
corrections from the GP emulator are represented by the dashed bars. The updated
solutions (5.15) at the end of the iteration are represented by the red dots. Note the
black and blue lines in [¢o.t1] should overlap but have been shown not to for clarity.

solution
Us ~ N (Gar(U}) + a(U1), K (U}, 01)), (5.14)

with variance stemming from uncertainty in the GP emulator. Repeating this process
to determine a distribution for the solution at t3 by attempting to propagate the
random variable U21 using Gar is computationally infeasible for nonlinear IVPs. To
tackle this and be able to propagate UJ, we approximate the distribution by taking

its mean value, setting
1_ 1y 4 (77l
Uy = Gar(Uy) + a(Uy).

This approximation is a convenient way of minimising computational cost in the
PC step, at a price of ignoring uncertainty in the GP emulator—we discuss possible

alternatives in Section 5.5.

The update process, applying (5.7) and then approximating the Gaussian distri-
bution by taking its expectation, is repeated sequentially for later ¢,,, yielding the

approximate solutions
Ul =Gar(U_)+ a(U_)) for n=3,...,N. (5.15)

This process is illustrated in Figure 5.2. Finally, we impose stopping criteria (2.10),
identifying which U} for n < I have converged. Using the same stopping criteria as

Parareal will allow us to compare the performance of both algorithms in Section 5.3.

92

5.2. The algorithm

Iteration k£ > 2

If the stopping criteria is not met, i.e. I < N, we can iteratively update any
unconverged solutions by re-applying the previous steps. This means calculating
Far(UF1, n =1,...,N — 1, in parallel and then storing new evaluations § =
(Far — QAT)(U,’f*l));:LMN_l, with corresponding inputs & = (Uf_l, e U]’f]__ll)T.
Hyperparameters are then re-optimised and the GP is re-conditioned using all prior
acquisition data, i.e. z = [x;2] and y = [y; 9], generating an updated posterior®.

The update rule is then applied such that we obtain
UF = Gar(UF_)+ (UF_) for n=T1+2,...,N.

Once I = N, the solution, the number of iterations k taken to converge, and the
acquisition data x and y are returned. Recall that the acquisition data can be used
in future GParareal simulations (as “legacy data”) to provide the GP emulator with
more data and therefore exploit additional speedup—this will be demonstrated in
Section 5.3. For completeness, we fully define the GParareal scheme in the same way

as Parareal and SParareal.

Definition 5.1 (GParareal). For two numerical flow maps Far and Gar (described
in Section 2.2), and the GP emulator described before, the GParareal scheme is given
by

Ug = u’, (5.16a)
U1 = Gar(Uy), 0<n<N-1, (5.16b)
UM = Gar(UFT™) + a(UF™) 0<k<n<N-1 (5.16¢)

5.2.2 Kernel hyperparameter optimisation

The hyperparameters @ of the kernel x will need to be optimised in light of the
acquisition data y (and corresponding input data x). We optimise each element of
0 such that it maximises its (log) marginal likelihood (Rasmussen, 2004). To do
this, first define g(z) == (Far — Gar)(x) and g = (9(x;))]_o_ n_;- Recall N is the
length of & (and y) during the first iteration. This length will increase as more data
is accumulated each iteration but the following optimisation process will remain the
same. Given the evaluations y are noise-free, the likelihood of obtaining such data is
p(ylg,x,0) = 6(y — g), where (-) is the multidimensional Dirac delta function. All

this says is that our emulator is interpolating the acquisition data, i.e. fi(x;) = y;

®Here, [a; b] denotes the vertical concatenation of column vectors a and b.

93

Chapter 5. GParareal I: a learning-based time-parallel algorithm

Algorithm 3: GParareal

Initialise: Set counters k = I = 0 and define U, U* and UF as the refined,

coarse, and fine solutions at the nth time step and kth iteration
respectively (note U¥ = U¥ = Uk = u° Vk). If known, initialise
any legacy Far — Gar input data x, output data y, and
hyperparameters 6.

%Calculate initial values at each ¢, by running Gar serially.

1 forn=1to N do

[NV N

© o g o

10
11
12

13

14
15
16
17
18
19

20

21
22
23
24

U0 = Gar(U°_,);
Uo — UO.

nd
rk=1to N do

#Propagate refined solutions (from iteration k£ — 1) on
unconverged time slices by running Far in parallel.

forn=171+1to N do
| UE = Far(US));
end
I=1+1;
U}“ = Ullffl for all k ; %copy converged solution at t; to future k.
x = append(z, (Uf_l, . Ujlﬁ,__ll)T) : %icollect new input data.
y = append(y, (Uf_:ll - Uf_:ll, ol Uﬁ,‘l - [A]Jlf,_l)T) : %collect new
output data.
0 = GPoptimise(x,y, 0) ; hoptimise hyperparameters.
#Propagate refined solution (at iteration k) with Gar, then
correct using the expected value of the GP prediction (5.12)
(this step cannot be carried out in parallel).
forn=1+1to N do
ot =U_y;
Uk = Gar(z*);
y* = GPpredict(x,y,0,2*) ; %returns Gaussian random variable
Uk = Uk + Ely*];
end
%Evaluate stopping criterion, saving all solutions up to tj.
I= max |UF-UF'<e Vi<n;
ne{l,...,.N}
if I = N then
‘ return k, U*, x, y, 6 ; %if tolerance met, stop.
end

end

94

5.2. The algorithm

and K (xj,z;) = 0. The marginal likelihood, given = and 0, is therefore

p(ylz,0) = / p(ylg, z,0) p(glz, 0) dg
likelihood i
1Kel1lhoo pr10r

_ / 5(y — 9)N (9]0, K (m,) dg = N'(y]0, K (z, x)),

where NV (y|0, K (2, x)) denotes the probability density of a multivariate Gaussian
distribution (3.6) evaluated at y, with mean vector 0 and covariance matrix K (x,x)
that depends on 6 (recall (5.2)). Taking the logarithm, we want to maximise the
log-marginal likelihood, i.e. find

1 1 N
argmax [log p(y|x,)] = arg max [—in[K(m, a:)]*ly—§ log | K (, w)\—; log 27|,
0 0

where |K(x,x)| is the determinant of K (x,x). The hyperparameters in 6 can be
estimated numerically using any preferred iterative optimisation routine. Estimation
is carried out once per iteration and is initialised using hyperparameters from the
prior iteration. Given this is a serial computation, we can save computational runtime
in later iterations by stopping the optimisation process when the hyperparameters
do not change significantly between iterations—this is implemented in the numerical

experiments in Section 5.3.

5.2.3 Computational complexity

The complexity of GParareal can be calculated similarly to that of Parareal—refer
back to Section 2.2.3 for notation. In GParareal, an additional cost is incurred when
(serially) conditioning the emulator on acquisition/legacy data and optimising the
hyperparameters. During the kth iteration, up to kN evaluations of Far — GaT
have been collected, hence standard cubic complexity GP conditioning scales like
O(k3N3) in terms of FLOPs (similarly, if not higher for the hyperparameters).
Given a fixed number of time slices N, let Tgp(k) represent the total wallclock
time taken to condition and optimise hyperparameters of the GP (using up to
kN observations) at iteration k. Note this is a strictly increasing function of k
(assuming the hyperparameter optimisation is not stopped beyond some iteration
to save compute time). Ignoring negligible serial overheads, we can write down the

total wallclock time for GParareal as

k
TGpara & NTQ + Z(Tf + (N - Z)Tg + TGP(Z))

i=1

k
= k‘T]: + (k‘ + 1) <N — 2> Tg + TGP, (5.17)

95

Chapter 5. GParareal I: a learning-based time-parallel algorithm

where Tgp = Zle Tcp(i). The approximate parallel speedup is then given by

k k\Tg 1Tgp] "
S N |l—=4+k+)(1-—) 7+ =—7— . 5.18
GPara |:N+(+)< 2N> T].‘+NT].':| ()
For completeness, the parallel efficiency is given by
ScPara k Tg Tep -
E ~ =|k+(k+1 — =)=+ == . 1
GPara N + (+) (9) T]: T]: (5 9)

Therefore, in addition to the Parareal requirements that k << N and Tg < T,
GParareal requires that Tgp < T'r in order to maximise parallel speedup. If this is

the case, the complexity of GParareal is approximately the same as Parareal.

This simple analysis suggests that if £ and/or N are large, then the cost of the
emulation may begin to dominate that of the fine solver, limiting the parallel speedup
from GParareal—see Section 5.3 for an example of this effect. This, however, need not
hinder the usability of GParareal for a number of reasons. Firstly, time-parallelisation
is typically deployed on problems where additional parallel speedup is needed beyond
that achieved by traditional domain decomposition, i.e. on spatio-temporal PDEs.
This means that if P processors are required for the space-parallel computations of
the PDE and N processors for the time-parallel computations, then NP processors
are required in total. For moderate to large values of P, only leftover HPC resources
are available to exploit time-parallelism and so N typically cannot be chosen very
large, somewhat limiting how large Tgp will be. Secondly, in the scenario that both
Top and T are small, one does not need to use a time-parallel method in the first
place, as Far can simply be run serially in this case. Thirdly, if both Tgp and Tr
are large or of a similar order, then one can reduce Tgp by reducing the number of
time slices N, thereby increasing Tr at the same time. We will assess these ideas in
Section 5.3.

Whilst there is no way to control the final value of k obtained by either Parareal or
GParareal, there are ways of reducing Tgp using more efficient non-cubic complexity,
emulation methods. For example, one could make use of sparse GPs, parallel matrix
inversion methods, or sparse approximate linear algebra techniques (Schéfer et al.,
2021) to reduce the cost of evaluating the inverse kernel matrix [K(x,z)]~!. One
could also reduce Tgp by clustering the input data points and training ‘local’ GPs in
parallel (Snelson and Ghahramani, 2007) or instead use inducing points to average
over input data points that are located close together in state space (Quifionero
Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006)—see Murphy (2023)
for additional methods. To reduce the cost of hyperparameter optimisation, one may
deploy parallel optimisation routines if available or, as we implement in Section 5.3,
stop the optimisation once additional data no longer improves the hyperparameter

estimates.

96

5.2. The algorithm

5.2.4 Error bound analysis

In this section, we are interested in analysing the absolute error

ek = U, - U¥, (5.20)
between the exact solution and the GParareal solution at iteration k£ and time t,,.
We show that this error has an upper bound proportional to the fill distance of the
dataset at iteration k (defined below). To do this, we now denote the input dataset at
iteration k as ¥ rather than a (because the dataset size strictly increases with each
iteration of GParareal) and, similarly, denote the output dataset y as y*. We will
make use of the same assumptions on the solvers Far and Gar that were introduced
in the SParareal error analysis and a known result on the consistency of the GP

posterior mean fi (5.5) to the true correction function g = Far — Gar.

Preparatory assumptions and results

We begin by recalling the assumptions made on the solvers from Section 4.2. Namely,
that Far is assumed to be the exact solver (Assumption 4.1) and Gar is a one-step
method with uniform local truncation error O(ATP*!) (Assumption 4.2) and a
Lipschitz condition (Assumption 4.3).

Next, we define the concepts required to state a result on the consistency of the
GP posterior mean—definitions taken from Stuart and Teckentrup (2018). Firstly,
define the fill distance hgr as the largest smallest distance between any point v € U

and any point z; € =¥, i.e.

hor == sup inf |v— z;].
vell zi€xk

It should be clear that each z; € z* is also contained in ¢/ with the intuition being
that h,k is the maximum distance any point v € U can be from one in a*. In
Figure 5.3, we illustrate the fill distance over a unit interval that contains data points
xk = (z1,...,25)7. If we were to obtain a new data point z¢ located somewhere in
the interval [0.1,0.5], hr would decrease, however, if located outside of [0.1,0.5] it

would remain unchanged (i.e. hr is non-increasing as more data points are added).

B B

z1 v T2 €3 X4 Ts

0 0.1 0.3 0.5 0.6 0.8 1

Figure 5.3: Illustration of the fill distance in one dimension where & = [0,1] C R and
x¥F =(0.1,0.5,0.6,0.8,1)T. The fill distance is hgyr = 0.2.

97

Chapter 5. GParareal I: a learning-based time-parallel algorithm

Secondly, we define a Hilbert space H,(U) of functions g: U — R, with inner
product (-, -) g,), as a reproducing kernel Hilbert space (RKHS) corresponding to a
symmetric, positive-definite kernel x: U x U — R if

i. Vv € U, the kernel k(v,v") € H(U) as a function of its second argument,

ii. Vo €U and g € Hi(U), the inner product (g, (v, -)) g, w) = g(v) (reproducing
property).

A Hilbert space can be loosely thought of as a complete vector space U equipped
with an inner product that defines a distance function. Less formally, the definition
of the RKHS means that if two functions in the RKHS are “close” under a norm,
then they are “close” point-wise as well. This is key to the following result on GP
posterior mean consistency, adapted from Wendland (2004, Theorem 11.14), where
it is assumed that the function we are trying to emulate (g) is in the RKHS H,(U)

where our kernel also exists.

Theorem 5.2 (GP posterior mean consistency). Suppose U C R is a bounded
interval and let k be the SE kernel. Denote the GP posterior mean, built using x*,
y®, and r (5.5) as fi and the function being emulated as g € H.(U). Then, for every
T € N, there ezist constants ho(1) and C; > 0 such that

l9(v) = A(0)| < Crhgilglm,)y Vv el,
provided that hor < ho(T). Note that]g\%{ﬂ(u) =9, 9 H.)-

This result states that error of the GP posterior mean is proportional to the fill
distance h,r (which ideally is small). The parameter 7 can be chosen arbitrarily,
however, if choosing a larger 7, the constants C; and ho(7) may increase and decrease,
respectively—see Wendland (2004, Section 11.14) for further discussion. Also see
Wendland (2004, Theorem 11.14) for a more general version of this result that holds
for derivatives and when ¢/ C R?. It should be noted that Theorem 5.2 only holds
when g € H,(U), i.e. the function of interest lies within the RKHS of the SE kernel.
If this is not the case, convergence issues may arise (see Karvonen (2022); Karvonen
and Oates (2022)) and one would need to choose an alternative kernel function that
reflects more of what is known about the structure of g. For consistency results

involving Matérn kernels, see Stuart and Teckentrup (2018).

Error bound for GParareal solutions

Theorem 5.3 (GParareal error bound). Suppose the GParareal scheme (5.16) satis-
fies Assumptions 4.1, 4.2, and 4.3, and that the conditions required for Theorem 5.2

hold. Then, the absolute error (5.20) of the GParareal solution to the autonomous

98

5.2. The algorithm

scalar ODE, i.e. f(t,u(t)) = f(u(t)) in (2.1), at iteration k and time t,, satisfies

n—(k+1)
Z A" 1<k<n<N,

3>

0 0<n<k<N.
where A = C{ATP*! + Lg and Ay = C-h7, |glm,

Proof. First, consider the case 0 < n < k < N. For n = 0, recall that Ué“ =Uy Vk >
0 by definition, hence ef = 0 Yk > 0. For n = 1, we seek U} = Far(Ug) which
we in fact know from applying Far to U during the prior iteration (i.e. k = 0).

Therefore, we have that

Ul = Far(U}) = Far(U9) = Far(Up) =Uy = UfF=U; Vk>1
= ef=0vk>1

We can repeat this process up to n = N to show that

UN = Far(UN-1) = Far(UV")) = Far(Un-1) =Ux = UN=UnVk>N

= ek =0Vkx=N

Now, consider the case 1 < k < n < N. Using the update rule (5.16¢), that Far is
the exact solver (4.5), and adding and subtracting the terms g(U¥) and Gar(U,),

we can write

en i1 = Unp1 — UF 1| = |Far(Un) — (Gar(UF) + p(UF))|
= |Far(Un) = (Gar(Uy) + f(US)) £ g(Ug) £ Gar(Un)!.

Applying the triangle inequality and the definition of g, we obtain

ek 11 <|(Far(Un) = Gar(Un)) — (Far(US) — Gar(UF)))
+1Gar(Un) = Gar(U)| + |g(Uy) — p(Uy)].

On the right hand side, the first term can be bounded using (4.7), the second by
(4.8), and the third using Theorem 5.2, yielding the recursion

where A = C1ATP™! + Lg and Ay, = Crh7 |9l .). This recursion can be solved

using the initial condition e = 0 V& > n to obtain the desired result. O

Theorem 5.3 shows that the error is proportional to the fill distance at iteration

99

Chapter 5. GParareal I: a learning-based time-parallel algorithm

k and that GParareal will recover the exact solution at time t,, after k = n iterations.
This result is rather general in the sense that we consider the fill distance with respect
to the entire space U C R, whereas in reality we should measure the fill distance
with respect to a moderately sized compact interval ¥V C U in which the solution w(t)
lies Vt € [tg, T]. Essentially, the accuracy of the GP posterior mean outside of V is
inconsequential to the GParareal scheme because the mean will never be evaluated
outside of V. Also note, the result will generalise for GParareal applied to systems
of ODEs by using norms and the generalised version of Theorem 5.2 in Wendland
(2004). In the multivariate case (d > 1), however, a larger number of acquisition data
points will be required to ensure the fill distance remains small. This is something
we will need to bear in mind when applying GParareal to large systems of ODEs—a

possible remedy for this situation is explored in Section 5.4.

5.2.5 Generalisation to ODE systems

The methodology in Section 5.2.1 can be generalised to solve systems of d autonomous
ODEs. Accordingly, the correction term we wish to emulate would be vector-valued,
i.e. U C R?, hence we require a vector-valued (or multi-output) GP, rather than a
scalar GP.

The simplest approach is to model each output of Far — Gar independently,
whereby we use d scalar GPs (sharing the same vector-valued inputs in state space)
to emulate each output. This requires initialising d GP emulators, each with their
own covariance kernel k; (usually the same for consistency) and corresponding
hyperparameters 8;—to be optimised independently using their own respective
observation datasets y(i), i =1,...,d. In this case, the d GP emulators can be
optimised independently of one another and so we make use of the idle processors to
carry out these computations in an embarrassingly parallel fashion. This reduces the
optimisation costs for d ODEs by a factor of d each iteration. We adopt this simple
approach in our implementation of GParareal, however, it should be noted that this
limits us to only being able to solve systems of d < N ODEs, as we only have N
processors available.

The more complex approach is to jointly emulate the outputs of Far — Gar by
modelling cross-covariances between outputs via the method of co-kriging (Cressie,
1993). A number of co-kriging techniques exist (see Alvarez et al. (2011) for a
brief overview), one of which is the linear model of coregionalisation that models
the joint, block-diagonal, covariance prior between multiple outputs using a linear
combination of the separate kernels x;. This is similar to when we considered
correlated randoms variables in SParareal. Testing revealed that using this method
did not improve performance enough (i.e. there was no reduction in k) to justify the
added computational complexity each iteration (results not reported). The d scalar

output GPs discussed before have complexity O(k3N?3) whereas these multi-output

100

5.3. Numerical experiments: nonlinear ODEs

GPs have complexity O(d*k>N3) (per iteration). Some applications may require
correlated output dimensions, hence we note the methodology here for any interested
readers.

As a final note, to solve nonautonomous systems of equations (2.1), there are two
possible approaches. One way is to include the time variable as an extra input to each
of the d scalar GPs—this requires a more carefully selected covariance kernel that
incorporates the time-dependence. The other way is to rewrite the d-dimensional
nonautonomous system as a system of d + 1 autonomous equations and solve as

described above—we do this in Section 5.3.3.

5.3 Numerical experiments: nonlinear ODEs

In this section, we present numerical experiments to compare the performance of
GParareal and Parareal on a number of low-dimensional nonlinear ODE systems,
namely the FitzHugh-Nagumo model, the chaotic Rossler system, a nonautonomous
system, and the double pendulum system.

For simplicity, Far and Gar are chosen to be explicit RK methods of order
q,p € {1,2,4,8}, respectively (¢ > p). As before, Nr and Ng denote the number
of time steps each solver uses over [tg, T|. For these experiments we built our own
cubic complexity GP emulator to highlight the effectiveness of GParareal using
standard out-the-box methods, postponing the implementation of more efficient and
sophisticated emulation methods to a future work. In the multivariate setting (recall
Section 5.2.5), we use a scalar output GP emulator (with isotropic SE covariance
kernel) to model each output dimension of Far — Gar and assign each one its own
processor. Hyperparameter optimisation is carried out at each iteration, stopping
when the (maximal) absolute difference between hyperparameters at successive

iterations is smaller than 10~2.

5.3.1 FitzHugh—Nagumo model

In this experiment, we consider the FitzHugh-Nagumo (FHN) model (FitzHugh,
1961; Nagumo et al., 1962) given by

3

uy
Uy — —4 + u2

du1 —C(.

d’LL2
o):

e _ —%(ul —a+ buy), (5.21)
and parameters (a,b,c) = (0.2,0.2,3). We integrate (5.21) over ¢ € [0,40], dividing
the interval into N = 40 slices, and set the tolerance for both GParareal and Parareal
to € = 1076, We use solvers Gar = RK2 and Far = RK4 with Ng = 160 and
Nz = 1.6 x 10° steps, respectively.

In Figure 5.4(a), we solve (5.21) with initial condition u = (—1,1)T using

both algorithms. Observe that the accuracy of GParareal is of approximately the

101

Chapter 5. GParareal I: a learning-based time-parallel algorithm

same order as the solution obtained using Parareal—when comparing both to the
serially obtained fine solution (Figure 5.4(b)). Note, however, that in Figure 5.4(c),
GParareal takes six fewer iterations to converge to these solutions than Parareal does.
As a result, GParareal locates a solution in faster wallclock time than Parareal, see
Figure 5.4(d), with an almost 5x speedup vs. the serial solver—over twice the 2.4x
speedup obtained by Parareal. Note that we increase Nz to 1.6 x 10® to ensure Far
is expensive to run and realise parallel speedup in Figure 5.4(d) (as both algorithms
require Tg/Tr < 1).

To compare the convergence of both methods more broadly, we solve the FHN
model (5.21) for a range of initial values. The heatmap in Figure 5.5(a) illustrates how
the convergence of Parareal is highly dependent, not just on the solvers in use, but

also the initial values at t = 0, taking anywhere from 10 to 15 iterations to converge.

Fine - Parareal Fine - GPara‘rea‘l‘

10»10 L 1 l ' ' l']

wi(t)
uj error

1015
Fine o GParareal x Parareal
10°
5 105]
3
EIT]
L, $ 1010
L L L 10-15 Fa VS L L L
0 10 20 30 40 0 10 20 30 40
t t
(a) (b)
0 —o— Parareal 14 - 6
109 —e—GParareal |} L 5
— — —Tolerance 13 e 4
g3
12¢ &2
1
0

=
[

4 8 16 32 64|
Processors

[
N

=
o

og, (wallclock time)

Max. absolute error

1
©

8 |- |—e— Parareal
—o— GParareal
7 + |- -- - Fine Solver

1 2 4 8 16 32 64

Processors
(d)

Figure 5.4: Numerical results obtained solving the FHN model (5.21) for u® = (—1,1)T.
(a) Time-dependent solutions using the fine solver, GParareal, and Parareal—both
GParareal and Parareal plotted only at times ¢ for clarity. (b) The corresponding
absolute errors between solutions from GParareal and Parareal vs. the fine solution.
(¢) Maximum absolute errors (2.10) of each algorithm at successive iterations k until
tolerance ¢ = 1076 is met. (d) Median wallclock times (taken over 5 runs) of both
algorithms against the number of processors (up to 40). The inset plot displays the
corresponding parallel speedup.

102

5.3. Numerical experiments: nonlinear ODEs

12511 [11 11| 1258 5 s 5
110 |12 11] 1111101010 10 1[5 5 5 5
0.75 10 [REN 11 | 10 | 11 [EVREVEEVREY 0.75 |85 5 s 5 5
05|11 1110 |11 0.5 5 5 5 5 5
= 025 10 10 | 10 | 10 = 0.25 5 5 s 5 5
o 11|10 | 11 4 B8 I 5 5 5 5 5
Fo025(11 1110 10 101110 |10 [11| ¥ -0.25 5 5 5 5 5 5
-0.5 11 10 11| 10] s s 5 s 5 5 5 s
-0.75 1110 [10|10 10 4 B8 -0.75 ENCINC I 5 5 5 s
a1)10]10]10 12]10] 10 ' 11| 10 Bl s s 5 s 5 5 5
1.25 4 10 (11| -1.25 RIS 5 5 5
J2° 15 0025 01 0P Y1 L2015 0015 01 0P Y1
ui(t =0) up(t =0)
(a) Parareal (b) GParareal

Figure 5.5: Heat maps displaying the number of iterations taken until convergence
k of (a) Parareal and (b) GParareal when solving the FHN model (5.21) for different
initial values u® € [~1.25,1.25]2. Black boxes indicate where Parareal returned a NaN
value during simulation.

For some initial values, Parareal does not converge at all, with solutions blowing
up (returning NaN values) due to the poor accuracy of Gar. In direct contrast, see
Figure 5.5(b), GParareal converges sooner and more uniformly due to the flexibility
provided by the emulator, taking just five or six iterations to reach tolerance for
all the initial values tested. This demonstrates how using an emulator can enable

convergence even when Gar has poor accuracy.

Until now, GParareal simulations have been carried out using only acquisition data.

102 - - - - - - - - 10°
—oe— Parareal
—e—GParareal (no legacy) 5 10° 1
10% —o— GParareal (legacy) &
- - --Tolerance ©
. 3 q0l0f
8
5 101
s Fine - Parareal
< 0 Fine - GParareal (no legacy)|
><' 10 Fine - GParareal (legacy)
k
5 1001 1
3
$qp10f l 'ri n 3 = “ I:i ﬁ
108 i i i i i i i 10°15 i I I
1 2 3 4 5 6 7 8 9 10 0 10 20 30 40

k t

(a) (b)

Figure 5.6: Numerical simulations solving (5.21) for u® = (0.75,0.25)T using GParareal
with and without access to legacy data, i.e. Far — Gar data obtained solving (5.21)
for u® = (—1,1)T. The Parareal simulation of the same problem is also shown for
comparison. (a) Maximum absolute errors (2.10) against iteration number k until
tolerance € = 107% met. (b) Time-dependent errors of the corresponding numerical
solutions from each simulation vs. the fine solution.

103

Chapter 5. GParareal I: a learning-based time-parallel algorithm

125fof2fafofofolalalofo]o
1[0 olofolo|of2lalala
o7s/ofofofofa[2[ala][of[a]o0
os5[-2[-2][0ofo|-2]|0|0|o0|[-1]0]o0
zo2lofofofofa]ofalal2]ala
" oolalalf2alofalalofofa]o
Fo025(0 1|00 0|a]0|0 1|11
05/0/0fofof-a]-1|-2][0of[0o]0]o0
75| fafaf2]a]a]ofo][2]0]o0
alofofoflofalofofofofala
a2s{ofofofofofofof[2][2]2]-2
A2 0% 02022 O 22 0P 1 M a®
ui (t =0)
Figure 5.7: Heat map displaying the decrease in the number of iterations taken
until convergence of GParareal when solving (5.21) for different initial values u° €
[—1.25,1.25]2 with legacy data compared to without, i.e. compared to Figure 5.5(b).
Legacy data was obtained by solving (5.21) for u® = (—1,1)T.

In Figure 5.6, we demonstrate how GParareal can use both acquisition and legacy
data to converge in fewer iterations than without the legacy data. Approximately
kN = 5 x 40 = 200 legacy data points, obtained solving (5.21) for u® = (-1,1)T,
are stored and made available to the GP emulator when solving (5.21) for alternate
initial values u® = (0.75,0.25)T. In Figure 5.6(a), we can see that convergence
takes two fewer iterations with the legacy data than without. The accuracy of the
solutions obtained from these simulations is again shown to be of the order of the
Parareal solution in both cases—see Figure 5.6(b). Repeating the experiment from
Figure 5.5(b) with the same legacy data for a range of initial values we see that
k is either unchanged or improved in all cases, see Figure 5.7. It should be noted
that conditioning the GP and optimising hyperparameters using the legacy data
comes at extra (serial) computational cost and checks should be made to ensure that
Tr > Tgp. We will examine the effect of legacy data on GParareal runtimes in the
next section and more so in Chapter 6. These results illustrate that using GParareal
(with or without legacy data) we can solve and evaluate the dynamics of the FHN

model in significantly fewer iterations than Parareal.

5.3.2 Rossler system
Next we solve the Rossler system,

duq dus P dus
_ = —U9 — U —— =1U au
dt 2 3 dt 1 2, dr

= b+ us(u; — &), (5.22)
with parameters (a,b,¢) = (0.2,0.2,5.7) that cause the system to exhibit chaotic
behaviour (Réssler, 1976). We wish to integrate (5.22) over ¢ € [0, 340] with initial
values u® = (0, —6.78,0.02)T and solvers Gar = RK1 and Far = RK4. The interval
is divided into N = 40 time slices, Ng = 9 x 10* coarse steps, and Nr = 4.5 x 108

104

5.3. Numerical experiments: nonlinear ODEs

Fine
1 F 4
0 o GParareal
Parareal

Uy error

¢ of g
s W Fine - Parareal
1015 Fine - GParareal (no legacy) |1
5h —— Fine - GParareal (legacy)
10° : ‘
g 10°
210+ 2 10-10F
! . . | 10715
-10 -5 0 5 10 0
Uy t
(a) (b)
10* e . . .
—o—Parareal 15+ 4
—oe—GParareal (no legacy) 3
102+ —o&— GParareal (legacy) 12 g
- - - -Tolerance T2
L S - E e e — . %
2 100 £ 13} S i
2 % o
E g 12} 2 4 8 16 32 64
2 102 = Processors
= s
10 10+ —o— Parareal
—o— GParareal (no legacy)
Wb oo N o N1 9 I |—e— GParareal (legacy)
10 O - -- - Fine Solver
NY DY XS 0A %Q\,Q\,\,\’,L\:’)\y\f),\,b,\,ﬂ\,‘b\? 1 2 4 8 16 32 64
k Processors
(c) (d)

Figure 5.8: Numerical results obtained solving the Rossler system (5.22) over ¢ €
[0,340]. (a) Solutions from the fine solver, GParareal (with legacy data), and Parareal
plotted in the (uq,us)-plane—both GParareal and Parareal plotted only at times ¢ for
clarity. (b) The corresponding absolute errors between solutions from GParareal and
Parareal vs. the fine solution. (¢) Maximum absolute errors (2.10) of each algorithm
at successive iterations k until tolerance e = 1075 is met. (d) Median wallclock times
(taken over 5 runs) of each simulation against the number of processors (up to 40). The
inset plot displays the corresponding parallel speedup.

fine steps. The tolerance is set to ¢ = 107,

In this experiment, rather than obtaining legacy data by solving (5.22) using
alternative initial values (as we did in Section 5.3.1), we instead generate the data by
integrating over a shorter time interval. This is particularly useful if we are unsure
how long to integrate our system for, i.e. to reach some long-time equilibrium state
or reveal certain dynamics of the system, as is the case in many real-world dynamical
systems. For example, systems that feature random noise may exhibit metastability,
in which trajectories spend (a long) time in certain states (regions of phase space)
before transitioning to another state (Grafke et al., 2017; Legoll et al., 2022). Such
rare metastability may not be revealed/observed until the system has been evolved
over a sufficiently large time interval. We propose integrating over a ‘short’ time

interval, assessing the relevant characteristics of the solution obtained, and then

105

Chapter 5. GParareal I: a learning-based time-parallel algorithm

integrating over a longer time interval (using the legacy data) if required. Note
that to do this, all parameters in both simulations must remain the same, with the
exception of the time step widths—to ensure the legacy data is usable in the GP
emulator in the longer simulation. Suppose we solve (5.22) over ¢ € [0, 170], then we
need to reduce N, Ng, and Nr by a factor of two, i.e. use N® = N/2, Néz) = Ng/2,
and N](_-Z) = Nr/2 in the shorter simulation.

The legacy simulation, integrating over [0, 170], takes nine iterations to converge
using GParareal (ten for Parareal), giving us approximately EN®) =9 x 20 =180
legacy evaluations of Far — Gar (results not shown). Integrating (5.22) over the
full interval [0, 340], GParareal converges in four iterations sooner with the legacy
data than without—refer to Figure 5.8(c). In Figure 5.8(d) we can see that using the
legacy data achieves a higher numerical speedup (3.4x) compared to without (2.4x)
and compared to Parareal (1.6x). In Figure 5.8(a) we see the trajectories from
each simulation converging toward the Réssler attractor and Figure 5.8(b) illustrates
GParareal retaining a similar numerical accuracy to Parareal with and without the
legacy data. Note the steadily increasing errors for both algorithms is due to the

chaotic nature of the Rossler system.

5.3.3 Nonautonomous system

Next, we consider a nonautonomous system of ODEs to demonstrate how GParareal

handles explicit time dependence. We solve

du1

du t
Ty u%—u%), —2:u1+u2(——u%—u§), (5.23)

t
=zt g5 - dt 500
over t € [—20,500]—adapted from Trefethen et al. (2017). As described in Sec-
tion 5.2.5, we transform this two-dimensional nonautonomous system into a three-
dimensional autonomous system by introducing an additional variable ug(t) = ¢,
where dus/dt = 1. Given that we know us(t) explicitly, the third dimension of
FAaT — Gar need not be modelled with a GP. However, given the GPs are run in
parallel anyway, this does not add to the cost of running GParareal.

We select solvers Gar = RK1 and Far = RKS8 with Ng = 2048 and Nr =
5.12 x 10° steps, respectively. We use N = 32 time slices, initial condition u® =
(0.1,0.1,—20)T, and a stopping tolerance of ¢ = 1075, In Figure 5.9, we plot the
solutions and corresponding errors generated by each of the solvers over time. Again,
the results illustrate good convergence to the fine solver solution, with GParareal
taking 10 iterations to locate the solution and Parareal taking 20. We suspect that
the superior performance of GParareal is partially due to the almost periodic nature
of the solutions in Figure 5.9(a), enabling the emulator to reproduce the dynamics of
Far — Gar quite well.

Next, we run a strong scaling experiment to measure the effect of increasing the

106

5.3. Numerical experiments: nonlinear ODEs

100~ : : :
0.6 // Fine - Parareal —— Fine - GParareal
= 5 107}
0.4 Fine % B
2] | o Shonma
s 0 1025 | e
-0.2
04 100 [
-0.6 5 107}
05 e ———
= 10-10 L
0.5 0 50 10 1015 e I i
“ ¢ 0 100 200 300 400 500
t
a
Figure 5.9: Numerical results obtained solving the nonautonomous system (5.23).
(a) Time-dependent solutions using the fine solver, GParareal, and Parareal—both
GParareal and Parareal plotted only at times t on [—20,150] for clarity. (b) The
corresponding absolute errors between solutions from GParareal and Parareal vs. the
fine solution, having converged after 10 and 20 iterations, respectively.

number of time slices N (and hence processors) on convergence, wallclock time, and
speedup—see Table 5.1. To do this, we increase Nz to 5.12 x 10'°, so that Far
is sufficiently expensive to observe speedup. We observe a good match between all
numerical and theoretical results for both Parareal and GParareal—this is depicted
in Figure 5.10. Firstly, notice that kpa. increases with N whilst kgpara remains

largely unaffected, leading to speedups for GParareal being roughly 2x to 4x that of

14 | |—*— Parareal (theory)

- -0 - Parareal (numerical)
—x— GParareal (theory)

- 0 - GParareal (numerical)
- -- - Fine Solver

12 ¢

10

Speedup

log, (wallclock time)

14 |
13+
12 - L : 0] L .
32 64 1%8 256 512 32 64 1;8 256 512
(a) (b)

Figure 5.10: Strong scaling results obtained solving the nonautonomous system (5.23)
for N € {32,64,128,256,512}. (a) Wallclock times using the fine solver (dashed black),
GParareal (dashed blue), and Parareal (dashed red). Corresponding theoretical results
are given by the solid lines, calculated using (2.11) and (5.17), respectively. (b) The
corresponding speedup results using the same lines and colours—theoretical results
calculated using (2.12) and (5.18), respectively.

107

Chapter 5. GParareal I: a learning-based time-parallel algorithm

Table 5.1: Numerical wallclock time, speedup, and efficiency results obtained solving
the nonautonomous system (5.23) for N € {32,64, 128,256,512} with (a) Parareal and
(b) GParareal. Theoretical results calculated using (2.11)—(2.13) and (5.17)—(5.19) are
shown in brackets. All timings are measured in seconds.

‘ N H kpara Tg ‘ Tf ‘TGP ‘ Ticrial ‘ Tpara ‘ Spara ‘ Epara ‘
32 || 20 | 1.60E—4 | 4.23E3 | — | 1.35E5 | 8.92E4 (8.47E4) | 1.52 (1.60) | 0.05 (0.05)
64 | 31 | 9.80E—5 | 2.10E3 | — | 1.35E5 | 6.75E4 (6.52E4) | 2.00 (2.06) | 0.03 (0.03)
128 || 55 | 9.10E—5 | 1.06E3 | — | 1.35E5 | 6.47E4 (5.81E4) | 2.09 (2.33) | 0.02 (0.02)
256 | 99 | 6.90E—5 | 52382 | — | 1.34E5 | 5.64E4 (5.17E4) | 2.37 (2.59) | 0.01 (0.01)
512 151 | 6.30E—5 | 2.62E2 | — | 1.34E5 | 4.42E4 (3.95E4) | 3.03 (3.39) | 0.01 (0.01)
(a) Parareal results
‘ N H kGPara TQ ‘ T]—‘ ‘ TGP ‘ Tserial ‘ TGPara SGPara EGPara

32 10 1.60E—4 | 4.23E3 | 5.81 1.35E5 | 4.33E4 (4.23E4 3.13 (3.20) | 0.10

4.21 (4.57) | 0.07

() ((0.10)
() ((0.07)
128 | 16 | 9.10E-5 | 1.06E3 | 3.01E2 | 1.35E5 | 1.90E4 (1.72E4) | 7.13 (7.86) | 0.06 (0.06)
() ((0.05)
() ((0.01)

64 14 9.80E—5 | 2.10E3 | 24.74 | 1.35E5 | 3.20E4 (2.95E4 0.07

256 18 6.90E—5 | 5.23E2 | 1.24E3 | 1.34E5 | 1.17E4 (1.06E4) | 11.42 (12.57) | 0.04 (0.05

6.34 (6.65) | 0.01

512 15 6.30E—-5 | 2.62E2 | 1.62E4 | 1.34E5 | 2.10E4 (2.02E4 0.01

(b) GParareal results

Parareal. For both algorithms, the cost of Tg and T'r decreases as N increases (due to
fewer time steps per time slice), whilst Tgp increases in GParareal (due to increasing
numbers of data points used to train the GP emulators in each simulation). Up to
N =128, Tap < Tr and so we observe increasing parallel speedup for GParareal. At
N = 256, however, there is a turning point where the cost of training the GP is 2.4
times larger than 7Tr, meaning that speedup is severely restricted. This is exacerbated
further when using N = 512 processors, where Tgp is now almost 62 times the size
of T'r. Even though using the GP emulator massively helps reduce the number
of iterations k for every value of N (compared to Parareal), these results clearly
highlight the severe impact that the serial cost of the GP optimisation/conditioning
has on realisable parallel speedup from GParareal. In turn, this hinders the parallel

efficiency of the algorithm.

5.3.4 Double pendulum system

Consider now the double pendulum system: a simple pendulum of mass m, rod

length ¢, connected to another simple pendulum of equal mass m, rod length ¢, acting

108

5.3. Numerical experiments: nonlinear ODEs

Figure 5.11: A schematic of the double pendulum system.

under gravity g (see Figure 5.11). Four ODEs govern the dynamics of this system:

du

dt — ug,

duz _,

dt — u4,

dug —ud f1(u1,ug) — ufsin(uy — ug) — 2sin(uy) + cos(uy — ug) sin(uz) (5.24)
dt fa(u1,u2) ’

dug 2u2 sin(uy — u2) + u? f1(u1,u2) + 2 cos(uy — uz) sin(uy) — 2sin(usg)

dt fa(ur,u2) ’

where f1(u1,us) = sin(u; —ug) cos(uy —uz) and fa(u1, uz) = 2—cos?(u; —uz) (Danby,
1997). Note that m, ¢, and g have been scaled out of (5.24) by letting ¢ = g. The
variables u; and ue measure the angles between each pendulum and the vertical axis,

while uz and w4 measure the corresponding angular velocities.

Fine - Parareal Fine - GParareal

Uy error

Fine o GParareal * Parareal‘

(t)
w
B
Uy error
=
o
&

2 10»10 L

T i n 10-15 L L L
0 20 40 60 80 0 20 40 60 80
t t

(a) (b)

Figure 5.12: Numerical results obtained solving the double pendulum system (5.24).
(a) Time-dependent solutions for w; and wus using the fine solver, GParareal, and
Parareal—both GParareal and Parareal plotted only at times ¢ for clarity. Dashed lines
indicate “turning over” angles, at which either pendulum passes through an odd multiple
of m. (b) The corresponding absolute errors between solutions from GParareal and
Parareal vs. the fine solution, having converged after 23 and 22 iterations, respectively.

109

Chapter 5. GParareal I: a learning-based time-parallel algorithm

25 WP 10 | 17 [21 25 6 19 |17 [21 6 0
)l 30 15|14 |18 | 17 2 8 26 17| 12| 16 | 13
15 W I 16 | 13 | 15 | 16 | 17 6 R 8 | 24 11| 15 11| 12 [P2A] 13
1 19|14 (13| 15| 16 | 16 | 17 [BI5 i 26 19127 [11] 9 |7 |13 B8
5 05 M 17 13|16 |15 16| 16 W = o5 EERREN 17 (13| 14| 8 | 8 [1220
o 17 | 15 1515 15 | 17 o 18 | 15 | 10 10 | 15 | 18
XY 16 |16 |15 16 | 13 |17 Tos RPN 20 (12| 8 | 8 | 14|13 |17
-1 M 17|16 |16 [15|13] 14 |19 1 PPN 13 | 7 | 9 (11| 7 [12]10
-1.5 BB 17 [16 | 15 | 13 | 16 [CLNIRE -1.5 Il 13 PPN 12 | 11 | 15 [12
2 17 18|14 15 0 2 1316 12| 17
25 21| 17 | 19 [PZAIPE 2.5 [EB 6 21|17 | 19
22 A5 > g5 0B Y45 195 22 A5 > g% 0B Y45 195
u(t =0) u(t =0)
(a) Parareal (b) GParareal

Figure 5.13: Heat maps displaying the number of iterations taken until convergence
k of (a) Parareal and (b) GParareal when solving the double pendulum system (5.24)
for different initial angles (u1(0),u2(0))T € [—~2.5,2.5]> and initial angular velocities
(u3(0),usg(0))T = (0,0)7, i.e. the pendulums are released from rest. Black boxes indicate
where Parareal returned a NaN value during simulation.

For this experiment, we select solvers Gar = RK1 and Far = RK8 with Ng =
3072 and Nx = 2.1504 x 10° steps, respectively. We integrate over ¢ € [0, 80], using
N = 32 time slices with a stopping tolerance ¢ = 107%. In Figure 5.12, we plot
solutions for u; and wug over time using initial conditions u® = (2,0.5,0,0)7, i.e.
the pendulums are positioned at some (positive) initial angles and released from

rest. Observe how both pendulums move chaotically, with the inner pendulum

18 T
—x— Parareal (theory)
- -0 - Parareal (numerical) i
174 25 | —%— GParareal (theory) g
- © - GParareal (numerical) !
. - -- - Fine Solver
216+ 20
3 =
<15+ g 15
E &
E R
L1at 1 10+
13 ¢ s % 5L
12 . . . 0
32 64 128 256 512 32

() (b)

Figure 5.14: Strong scaling results obtained solving the double pendulum system
(5.24) for N € {32,64, 128, 256,512}. (a) Wallclock times using the fine solver (dashed
black), GParareal (dashed blue), and Parareal (dashed red). Corresponding theoretical
results are given by the solid lines, calculated using (2.11) and (5.17), respectively. (b)
The corresponding speedup results using the same lines and colours—theoretical results
were calculated using (2.12) and (5.18), respectively.

110

5.3. Numerical experiments: nonlinear ODEs

oscillating within [—7, 7] and the outer pendulum oscillating between odd multiples
of 7, “turning over” a number of times®. We attain good solution accuracy from
GParareal with respect to the fine solution with errors slowly increasing over time
due to the chaotic nature of the system, much like what was seen in the Rossler
experiments in Section 5.3.2. We plot k for various initial angles in Figure 5.13
to highlight the system’s sensitivity to initial conditions. For small initial angles,
GParareal converges sooner than Parareal, but for much larger angles both algorithms
use almost all of the 32 iterations to locate a solution (and in some cases, Parareal
does not return a solution).

In Table 5.2 and Figure 5.14, we again examine the strong scaling of both
algorithms. To do this, we increase the number of fine time steps to Nr = 2.1504 x
10'°. We purposefully choose an initial condition (u’ above) for which both algorithms
converge in approximately the same number of iterations, so that we can directly
observe how the increasing GP cost affects the performance of GParareal for large
N. Under these circumstances, we can think of the wallclock time for GParareal as

(approximately) the wallclock time of Parareal plus the wallclock time of the GP

Table 5.2: Numerical wallclock time, speedup, and efficiency results obtained solving
the double pendulum system (5.24) for N € {32, 64, 128,256,512} with (a) Parareal and
(b) GParareal. Theoretical results calculated using (2.11)—(2.13) and (5.17)—(5.19) are
shown in brackets. All timings are measured in seconds.

‘ N H kpara TQ ‘ Tf ‘ TGP ‘ Tscrial ‘ Tpara ‘ Spara ‘ Epara ‘
32 22 2.53E—4 | 5.75E3 | — 1.84E5 | 1.31E5 (1.26E5) 1.41 (1.45) 0.04 (0.05)
64 21 1.46E—4 | 293E3 | — | 1.87E5 | 6.29E4 (6.14E4) 2.97 (3.05) 0.05 (0.05)
128 || 23 | 1.27E—4 | 1.46E3 1.86E5 | 3.85E4 (3.35E4) | 4.84 (5.57) | 0.04 (0.04)
256 | 21 | 9.10E-5 | 7.35E2 | — | 1.89E5 | 1.66E4 (1.55E4) | 11.36 (12.19) | 0.04 (0.05)
512 19 7.00E—5 | 3.69E2 | — | 1.89E5 | 7.58E3 (7.01E3) | 24.90 (26.94) | 0.05 (0.05)
(a) Parareal results
‘ N H kGPara Tg ‘ TF ‘ Tep ‘ Tyerial ‘ TGPara SGPara EGpara

32 21 2.53E—4 | 5.75E3 | 21.44 | 1.84E5 | 1.21E5
64 23 1.46E—4 | 2.93E3 | 35.22 | 1.87E5 | 7.00E4

1.21E5
6.72E4

1.52 (1.52) | 0.05
2.67 (2.78) | 0.04

() (0.05)
() (0.04)
128 | 23 | 1.27E—4 | 1.46E3 | 2.63E2 | 1.86E5 | 3.56E4 (3.36E4) | 5.24 (5.52) | 0.04 (0.04)
() (0.04)
() (0.02)

256 23 9.10E-5 | 7.35E2 | 1.87E3 | 1.89E5 | 2.04E4
512 22 7.00E-5 | 3.69E2 | 1.33E4 | 1.89E5 | 2.25E4

1.75E4) | 9.24 (10.03) | 0.04 (0.04

8.38 (8.83) | 0.02 (0.02

1.04E4

(b) GParareal results

5See code repository for an animation.

111

Chapter 5. GParareal I: a learning-based time-parallel algorithm

conditioning/optimisation. For N < 128, we observe that Tgp < T and so the
speedup of GParareal and Parareal are approximately the same. In these cases, using
GParareal is no more costly than using Parareal, with the additional benefit of being
able to re-use the acquisition data for a future simulation, if needed. For N > 256,
we begin to observe Tgp > Tr (or larger), so the numerical speedup of GParareal
begins to plateau. These results (and those in the prior section) make it clear that
including the learning costs within the PinT framework is of paramount importance
as they can have a huge impact on realisable parallel speedup. We will examine the

effect of Tgp on final GParareal runtimes further in Chapter 6.

5.4 Improving convergence: GParareal 4 fallback

In Section 5.2.4, we derived an error bound (Theorem 5.3) for solutions obtained from
GParareal at a given iteration that was proportional to the fill distance of the dataset
hgr. We know that the fill distance may become large when there is insufficient
acquisition data available, an effect that is exacerbated when the dimension d is large.
Therefore when solving d-dimensional systems of ODEs, GParareal may require
increasingly large amounts of data to model Far — Gar accurately and may therefore
take a large number of iterations to converge. The purpose of this section is to
investigate the behaviour of the posterior variance arising from the GP predictions
of Far — Gar, which up until now has been ignored, and gives us an indication of
how accurate the emulators are as the amount of acquisition data increases, i.e. as k
increases. Intuitively, one would expect the posterior variance of the GP predictions
to be larger during early iterations of GParareal due to the lack of acquisition data
available (in the absence of any legacy data).

In the univariate setting (d = 1), GParareal queries the scalar-output GP emulator

for Far — Gar at a number of input locations each iteration, obtaining a Gaussian

Maximal posterior standard deviation (MPSD)

10°® 0 5 10 15 20 25 30 0 5 10 15 20 25 30
k k
"

(a) e=10"° (b) e=10"° (c) e=10""

Figure 5.15: MPSD at each iteration k in simulations of GParareal. Each panel shows
results when solving the Lorenz96 (E.1) with forcing F' € {1,3,5} (other parameters
given in Table 5.3) and different stopping tolerances: (a) € = 107°, (b) ¢ = 107°, and
(c) e =107 (dashed black lines).

112

5.4. Improving convergence: GParareal + fallback

Table 5.3: Parameters used to solve the Lorenz96 system (E.1) for different levels of
forcing F—each row corresponds to a different experiment. These parameters are used
in the simulations in Figures 5.15, 5.16, and 5.17.

rfl] won [~ ¥ | N | Gar | Far

1|50 | [0,100] | 50 | 5E3 | 1E5 | RK1 | RK8
3| 50 | [0,100] | 50 | 5E3 | 1E5 | RK1 | RKS
5 | 50 | [0,100] | 50 | 1E4 | 1E5 | RK2 | RK8

posterior distribution with some mean and variance (recall (5.12)). At each iteration,
we will store the maximal posterior variance—in fact we will store its square root,
the maximal posterior standard deviation (MPSD). Given we are interested in the
multivariate setting (d > 1), the setup will be the same, except that we have d
independent emulators which return d MPSD values, again of which we take the
largest.

In Figure 5.15, we plot the MPSD against & (up until the stopping tolerance is met)
for the Lorenz96 system (E.1) using F' € {1,3,5} and d = 50 (refer to Appendix E for
details of the Lorenz96 system). The parameters used for the GParareal simulations
using different I’ are given in Table 5.3. Across the panels we decrease the stopping
tolerance ¢ (recall (2.10)) to highlight the behaviour of the MPSD when GParareal
stops. In the FF = 1 and F = 3 cases, we can see that the MPSD consistently
decreases as more acquisition data is accumulated each iteration, with GParareal
stopping one or two iterations after it drops below . As expected, decreasing the
stopping tolerance makes it more difficult for GParareal to stop sooner—reflected by
the increased number of iterations required to stop in each panel. In the F' = 5 cases,
we see that the emulators are struggling to accurately infer Faor — Gar until around
k = 15, with the MPSD remaining approximately constant. This suggests that
GParareal spends a lot of time “jumping around” state space looking for the correct
solution states. In the next section, we propose a remedy to avoid slow convergence
by making use of the GP posterior variance. In addition, all results showed that
GParareal will not stop iterating until the emulators are sufficiently accurate, i.e.
until the MPSD is smaller than ¢, another property that we can exploit to accelerate
convergence’. Overall, the F' = 5 cases highlight the need for the emulators to learn

Far — Gar sufficiently quickly during early iterations to avoid slow convergence.

"Note that posterior variances will struggle to go below the pre-set “jitter” in the GP emulators.
The jitter is a constant added to the diagonal of the covariance matrix K (,x) to ensure numerical
stability during inversion (typically via a Cholesky decomposition). If set too large, the jitter will
lead to large posterior variances and cause GParareal to struggle to reach the stopping tolerance
(the jitter is set to 107 ** in these experiments).

113

Chapter 5. GParareal I: a learning-based time-parallel algorithm

5.4.1 The modification

To improve the slow convergence that occurs when the GPs are insufficiently trained,
we investigate the use of a Parareal “fallback” correction. The intuition is that when
the GP posterior variance at the input location of interest is deemed “too large” we
may expect the posterior mean of Far — Gar to be a poor estimate of the exact
correction we need. In this scenario, the idea is to discard the GP posterior mean
and instead “fallback” and use the classic Parareal correction—similar to the idea
in SParareal where we chose the first “random” sample to be the classic Parareal
PC solution. We do not necessarily know whether the fallback will give us a “better”
correction than the GP posterior mean, however, the hope is that it will be useful
during earlier iterations of GParareal when we expect the GP to have poor accuracy

due to a lack of acquisition data.

At some iteration k, we query the (trained) GP emulator at input location U¥,

obtaining the Gaussian posterior
(Far = Gar)(Uy) | {=",y*} ~ N ((U}), K (U, UY)).

We then use posterior mean fi(UF) (5.5) in the GParareal update (5.16c), ignoring
the posterior variance K (Uk,U*) (5.6), its estimate of uncertainty. The proposal is
to check, each time we query the GP, whether the corresponding variance is large,

i.e. check whether
KU} UF) < w?, (5.25)

for some pre-defined “switching” tolerance w? > 0. If the tolerance in (5.25) is met,
then we accept the GP posterior mean and carry out the update as usual in (5.16¢).
If the tolerance is exceeded, however, we reject the posterior mean and instead use
the Parareal PC update (2.9¢). This fallback correction is readily available as it is an
element of the dataset that has been used to train the GP, i.e. (Far —Gar)(UF) € y*.
Note that in the multivariate case (d > 1), the criterion in (5.25) is checked for each
output dimension of Far — Gar (i.e for each of the d emulators) and so some output

dimensions may use the GP emulators and some may use the Parareal fallback.

This modified version of GParareal, henceforth referred to as “GParareal +
fallback”, enables the automatic switching between GP and Parareal corrections
depending on how well trained the GP emulator is at a given iteration. The value
of w?, however, must be chosen a priori to simulation. If chosen too small, the GP
posterior means will always be rejected, meaning that we are essentially running
classic Parareal (at higher cost because of the GP training/optimisation). If chosen
too large, the GP corrections will always be accepted, meaning we are running

standard GParareal. Between these extremes should lie values of w? for which

114

5.4. Improving convergence: GParareal + fallback

GParareal + fallback automatically switches between the two different corrections,
ideally converging in fewer iterations than standard GParareal. In this case, we would
expect more fallback corrections to be made during early iterations when limited
acquisition data is available to the GP emulator and more GP corrections during
later iterations once the emulator is sufficiently well trained. We will investigate this

numerically in the next section.

5.4.2 Numerical experiments

In this section, we test GParareal + fallback for various values of w? on the Lorenz96
system (E.1) with F' € {1,5}, see Figure 5.16. In the F' = 1 case, we observe (left
panels) that for small w? only fallback corrections are made (bottom left panel) and
so both Parareal and GParareal + fallback converge in k = 12 iterations as expected

(top left panel). As w? is increased, GParareal + fallback takes fewer iterations as an

35

Parareal
- © -GParareal + fallback

e~
[c]

@

10® 10 10%% 10° 6 102 10° 10 108 107 1012

| —#— Fallback
—%— GP emulators

0° 10
w2

0 0 : :

10 10 10 10° 10° 10° 10° 103> 10'® 107 10?2 10° 210'6
w? w

1

0.8

0.8

o
)

0.6

—#— Fallback
—%— GP emulators

o
IS

0.4

Fraction of corrections
Fraction of corrections

o
N

0.2

(a) F =1 (b) F=5

Figure 5.16: Iterations until convergence k of Parareal and GParareal + fallback (top
row) and the corresponding fraction of corrections made using the fallback or the GP
emulators (bottom row) against varying w? when solving the Lorenz96 system (E.1)
with (a) F'=1 and (b) F = 5. Shaded areas correspond to which correction term has
been called in GParareal + fallback (red = fallback only, blue = GP emulators only,
and purple = a mixture).

115

Chapter 5. GParareal I: a learning-based time-parallel algorithm

10°

—o— GParareal
—oa— GParareal + fallback

10258 ~f——55;“'

leviation (MPSD)

10—4 L

10°

=
£
g
7
g
=

108 : : : : :

0 5 10 15 20 25
Figure 5.17: (a) MPSD at each iteration k in simulations of GParareal and GParareal +
fallback (w? = 107°) when solving the Lorenz96 system (E.1) with the F' = 5 parameters
in Table 5.3. The dashed black line indicates the stopping tolerance ¢ = 1076. (b)
Fraction of corrections made by the Parareal fallback and the GP emulators each
iteration in the GParareal + fallback simulation. Shaded areas correspond to which
correction term has been called (red = fallback only, blue = GP emulators only, and
purple = a mixture).

increasing proportion of corrections are made by the GP emulators. Once w? hits 1079,
all corrections are being made by the GP emulators and the iteration count flattens
off at k = 5. In this particular example, GParareal + fallback converges in fewer
iterations than Parareal (whenever the GP emulator is used), further demonstrating
the power of using the GP emulators within the PinT framework. The F = 5
case (right panels) highlights the benefit of the Parareal fallback more clearly. For
w? > 1073, we see that no fallback corrections are made (standard GParareal) and
convergence occurs in k = 23 iterations, seven more than Parareal (k = 16). Between
107" < w? < 1073, however, we observe a range of behaviour, converging optimally
in k = 13 iterations when w? = 1075, This provides us with evidence that by using
GParareal in combination with the fallback corrections, convergence can occur in
fewer iterations than both standard GParareal and Parareal. There is clearly a
nonlinear relationship between k and w? and whilst this has only been shown for this

particular ODE system, the results certainly are encouraging.

Now let us focus on the F' = 5 case and examine the behaviour of the MPSD when
running both GParareal and GParareal + fallback (with w? = 107°) in Figure 5.17(a).
We see that by using the fallback corrections, the uncertainty in the GP emulators
decrease rapidly after 9 iterations compared to 18 without, reaching tolerance much
sooner. We can see this process in effect more clearly in Figure 5.17(b), where during
early iterations most of the corrections are carried out using the fallback with the
GP emulators taking over after iteration k = 8 (when sufficient acquisition data
is available). The fallback correction seems to have helped reduce the number of

iterations spent exploring the state space as we mentioned before.

116

5.4. Improving convergence: GParareal + fallback

10°

Fine - GParareal

Fine - GParareal (+ additional stopping criterion)

|Un — U¥|l

10—10 L

10-15 L L L 1
0 20 w0 60 80 100

Figure 5.18: Effect of using the additional stopping criterion (5.26) on final GParareal

solution accuracy. Shown are the maximal errors between solutions from GParareal vs.

the fine solution when solving the Lorenz96 system (E.1) with parameters from the first

row of Table 5.3.

As a final remark, recall that in each panel of Figure 5.15 and Figure 5.17(a) we
observed that GParareal does not stop iterating until the MPSD reaches the stopping
tolerance. This behaviour suggests that one could use this as an additional stopping
criterion in GParareal (and subsequently GParareal + fallback). If this were the case,
the algorithm would stop at iteration k if (i) all N time slices meet the standard

stopping criterion (2.10) or (ii) the MPSD from all of the emulators is below ¢, i.e.

max \/ K(Uk, U¥) < e. (5.26)

n

The intuition is that the improvement in solution accuracy is minimal once the MPSD
is very small. This should save an extra iteration or two, which we know can be
extremely beneficial in terms of speedup, at the expense of a small decrease in solution
accuracy®. For example, when solving the Lorenz96 system (with parameters from
the first row of Table 5.3) we save a single iteration of GParareal using the additional
criterion in (5.26) at little cost in terms of solution accuracy (see Figure 5.18).
This series of experiments has shown that we can make use of the (previously
ignored) GP posterior variance (5.6) within GParareal. While it may seem counter-
intuitive to use a Parareal fallback correction given that GParareal was developed to
improve the corrections made by Parareal, we have seen that by using both types
of correction, convergence can occur in fewer iterations than both algorithms (at
no extra computational cost). In the situation that more (or perhaps all) of the
corrections are being made by the Parareal fallback, one may ask: why not just use
Parareal? The answer would be that by using GParareal + fallback, we combine the

power of having both corrections available (as seen in Figure 5.16(b)) and we can

8Retrospectively thinking, this type of stopping criterion could also be used within SParareal.
One could stop SParareal when the largest standard deviation from the sampling rule is smaller
than e, as perturbations smaller than this are unlikely to improve the solution any further.

117

Chapter 5. GParareal I: a learning-based time-parallel algorithm

reuse the acquisition data (plus legacy data if we have any) in a future simulation,
whereas with just Parareal we cannot do this.

The question remains, however, over how to select w? prior to simulation (without
knowing beforehand whether GParareal or Parareal converges in fewer iterations).
The results in Figure 5.16(b) suggest that to converge in the fewest iterations for
this particular IVP, one should choose w? € [10~7,1075]. This is in fact where the
stopping tolerance lies (¢ = 107%) but is likely to just be coincidental. As a rule of
thumb, one could run GParareal + fallback initially with a large value of w? (e.g.
run standard GParareal), assess if convergence is slow, and then if necessary run it
again with w? ~ ¢ to see whether convergence improves. This process is far from
rigorous and so further testing on different IVPs is needed to reveal a more robust

way of choosing w? for different types of problems.

5.5 Discussion and further work

In this chapter, we presented GParareal, a learning-based time-parallel algorithm that
iteratively locates a numerical solution to a system of ODEs (in parallel) by using a
GP emulator to infer the correction term Far — Gar. The numerical experiments
reported in Section 5.3 demonstrate that GParareal performs favourably compared
to Parareal, converging in fewer iterations and achieving increased parallel speedup
for a number of low-dimensional nonlinear ODE systems. We also demonstrate
how GParareal can make use of legacy data, i.e. prior Far and Gar data obtained
during a previous simulation of the same system (using different ICs or a shorter
time interval), to pre-train the emulator and converge even faster.

In Section 5.3.1, using just acquisition data obtained during simulation, GParareal
achieves an almost two-fold increase in speedup over Parareal when solving the FHN
model. Simulating over a range of initial values, GParareal converged in fewer than
half the iterations taken by Parareal and, in some cases, managed to converge when
the coarse solver was too poor for Parareal. When using legacy data, GParareal could
converge in even fewer iterations. Similar results were illustrated for the Rossler
system in Section 5.3.2 but with legacy data obtained from a prior simulation over a
shorter time interval—beneficial when one does not know how long to integrate a
system for. In Sections 5.3.3 and 5.3.4, GParareal was tested on a larger number of
processors (up to 512), verifying the theoretical computational complexity results
given in Section 5.2.3. These strong scaling experiments showed that the cost of
conditioning and optimising the GP emulator needs to be accounted for and also be
much smaller than the cost of running the fine solver in order to maximise speedup.
In all cases, the solutions generated by GParareal were of a numerical accuracy
comparable to those found using Parareal.

GParareal in its current form may, however, suffer from the curse of dimensionality

118

5.5. Discussion and further work

in two ways. First, an increasing number of data points each iteration, O(kN),
increases the cost of conditioning and optimising the standard cubic complexity GP
we implemented—observed numerically in Sections 5.3.3 and 5.3.4. To aleviate this
problem, some of the non-standard (non-cubic complexity) GP emultaion techniques
mentioned in Section 5.2.3 could be implemented. Second, trying to emulate a
nonlinear d-dimensional function Far — Gar is difficult if insufficiently many data
points are available to the emulator. To tackle this issue, we proposed a modification
to GParareal (in Section 5.4) that makes use of a Parareal fallback (instead of the GP
posterior mean) when the GP posterior variance is deemed too large, i.e. greater than
some switching tolerance w? > 0. Numerical experiments showed that during early
iterations, the Parareal fallback was used more frequently (when the GP emulators
had insufficient acquisition data) while the GP emulator corrections were made more
frequently during later iterations (when enough acquisition data was available). The
modification was observed to be most useful in situations where (standard) GParareal
took more iterations to converge than Parareal, however, choosing w? remains an

open problem.

Alternatively, one may tackle the dimensionality issue by generating more acqui-
sition data with additional Fap and Gap runs (in parallel) using the idle processors—
this should come at little to no extra computational cost (note that training costs
would increase each iteration). Another option could be to use legacy data generated
by evaluating Far — Gar at specific input locations, chosen by an appropriate
space-filling design (e.g. Latin hypercube sampling) that satisfies certain fill distance
requirements in the state space—something we will do in Chapter 6. However, as
discussed in Section 5.2.4, the accuracy of the GP emulator (and therefore GParareal,
see Theorem 5.3) is strongly controlled by the fill distance, which is generally difficult
to restrict when d is large (even when large datasets are available). A final option
could be to consider dimensionality reduction techniques (e.g. principle component
analysis) and instead project the acquisition/legacy datasets onto a lower dimensional

space from which the emulation may be easier.

In equation (5.14), we approximate a Gaussian distribution by taking its expected
value, ignoring uncertainty in the GP posterior for Far —Gar. In this setting, the GP
emulator is used to interpolate the Far — Gar data, hence it is perfectly acceptable
to swap it out for any other sufficiently accurate interpolation method, e.g. kernel
ridge regression (Kanagawa et al., 2018). One alternative to approximating (5.14)
by its expected value could be to draw a random sample instead. This would yield a
sampling-based PinT scheme that would return a stochastic solution to the ODE,
much like SParareal. It is unclear how this algorithm would perform vs. Parareal (or
even SParareal), however, it could still make use of legacy data and perhaps generate a
measure of uncertainty over the solution following successive independent simulations.

Even though GParareal in its current form does not return a probabilistic solution

119

Chapter 5. GParareal I: a learning-based time-parallel algorithm

to the IVP (2.1), we believe that it constitutes a positive step in this direction. In
the next chapter, we will push GParareal to its limits by investigating how well it

can perform when solving PDE problems.

120

Chapter 6

GParareal II: application to
PDEs

Overview

Modelling complex real-world systems typically involves solving systems of PDEs
which evolve in both space and time. PDEs are typically re-written as large systems
of ODEs (2.1) using a variety of different spatial discretisation schemes (e.g. finite
difference, element, and volume methods) that have varying degrees of accuracy
and may have certain desirable properties for given systems (e.g. stability). In
this chapter, we continue to investigate the performance of GParareal by solving
PDE problems of increasing size d. Our main focus is to determine to what extent
GParareal suffers from some of the issues (e.g. high GP emulator runtimes) discussed
and observed in Chapter 5. For GParareal to be able to solve real-world problems we
need to understand and quantify the scale of these limitations and propose options
to mitigate some of the more negative effects.

Before diving into the numerical experiments, we briefly mention the solution
of linear IVPs in Section 6.1 and discuss why we do not consider solving them
with GParareal. In Section 6.2, we solve some nonlinear PDEs, applying standard

GParareal (without the fallback correction) to the one-dimensional viscous Burgers’

equation and the two-dimensional FitzHugh-Nagumo (2D FHN) system. For Burgers’
equation we analyse the performance of GParareal when solving for different initial
conditions and when using different types of legacy data, measuring the impact
that GP training/querying costs have on realisable speedup. In light of these
experiments, we propose storing Cholesky decompositions of covariance matrices
following hyperparameter optimisation, resulting in a significant reduction in GP
querying time. In the 2D FHN experiments, we increase the number of spatial
discretisation points and observe that GParareal converges in fewer iterations than

Parareal in almost all cases. However, the GP emulation costs take up a significant

121

Chapter 6. GParareal II: application to PDEs

proportion of the GParareal runtime, leading to severe speedup degradation. To
mitigate these effects, we optimise GParareal further by pre-computing distance
matrices in the kernel evaluations. We conclude by briefly discussing the impact of
these improvements, ready for a full and thorough evaluation of our probabilistic

PinT algorithms in Chapter 7.

6.1 Some remarks on linear PDEs

Having overlooked linear problems in Chapter 5, we should point out that when the
vector field in (2.1) is linear, we do not need to use a GP to emulate the correction
term in GParareal because it is simply a linear operator. By modifying GParareal,
we could learn this linear operator directly (using only acquisition data from the first

iteration) and solve linear IVPs in one iteration, however, this is not necessary.

As mentioned before, when spatially discretising a linear (autonomous) PDE,
we obtain a system of ODEs (4.26), where @ is typically a large (depending on the
number of spatial points) and possibly sparse real matrix. We know that this system

t=t0) which requires the evaluation of the

has an analytical solution w(t) = w(ty)e?!
matrix exponential eQ(10) = 3% (Q(t — ty))/i!. To find the solution at evenly-
spaced time points t = (tp,...,txN), one can simply compute the matrix exponential
e@AT once and then apply it serially (via matrix multiplication) to the previous
state, i.e. one can then rapidly evaluate w(t,11) = u(tn)eQAT. To calculate the
matrix exponential one can use Krylov subspace methods, the scaling and squaring
method (Higham, 2005) or Padé approximations (Arioli et al., 1996), among others.
For particularly large systems, the multiplication of the matrix exponential and the
previous state can also be parallelised. This approach of solving linear autonomous
PDEs yields very high parallel efficiencies and is more accurate than using iterative

PinT methods such as Parareal and GParareal.

For inhomogeneous nonautonomous linear IVPs, e.g. f(t,u(t)) := Qu(t) + h(t)
(where h(t) is a difficult-to-integrate source term), Gander and Giittel (2013) propose
using the ParaFzp algorithm. ParaExp exploits the fact that the homogeneous term
Qu(t) can be integrated rapidly using the matrix exponential method suggested
above, whilst the inhomogeneous part h(t) is more costly and therefore parallelisable.
This non-iterative method can achieve parallel efficiencies in excess of 0.84 for both
diffusive and non-diffusive problems. In addition, they discuss other methods for
solving this problem as well as the homogeneous autonomous problem discussed
before. Given that these methods are already highly efficient and accurate, our focus

will remain on solving nonlinear IVPs with GParareal.

122

6.2. Numerical experiments: nonlinear PDEs

6.2 Numerical experiments: nonlinear PDEs

We now turn our attention back to GParareal, assessing its performance when solving

nonlinear PDEs.

6.2.1 One-dimensional viscous Burgers’ equation

We begin our experiments by solving the viscous Burgers’ equation

PDE V= VUgy — VU (x,t) € (=L, L) x (to, T
IC v(x,tg) = vo(x) x € [-L,L]
BCs v(=L,t) =v(L,t) L€ [to.T] (6.1)

Ve (=L, t) = vy (L, t)

for v(z,t), where v is the diffusion coefficient. We discretise the spatial domain
using d + 1 equally spaced spatial points z;41 = x; + Az where Az = 2L/d (for
j=0,...,d). Writing u;(t) := v(x;,t), the semi-discretised problem is then given by

du 2 2
E:Vng)u—uO(D,g)u), t € (to, T,
where
2 1 1] [0 1 —1]
1 -2 1 -1 0 1
D@ _ 1 D@ — 1 (6.2)
T (Al’)Q ’ ® 2A:L’ ’ '
1 -2 1 -1 0 1
|1 1 2] | 1 -1 0]

are second-order accurate finite difference matrices (Fornberg, 1988). Note that we
have enforced the periodic boundary conditions via the first and last rows of these
spatial operators. There are more accurate/stable spatial discretisation methods
for dealing with the nonlinear term in (6.1), however, for our experiments finite
differences will suffice.

Before proceeding with the experiments we remark on the implementation of
different boundary conditions. When attempting to implement Dirichlet boundary
conditions (e.g. v(—L,t) = v(L,t) = 0) in (6.1) we found that the GP emulators
run into numerical stability issues when trying to Cholesky decompose covariance
matrices. The instabilities arise because a number of the acquisition data points
generated are “too close” to one another in state space—due to the fixed solution
values on the boundaries. A similar problem occurs for Neumann boundary conditions
(e.g. vz(—L,t) = vy(L,t) = 0) if the solution values on the boundaries do not change

very much over time. With periodic conditions, solutions values on the boundaries

123

Chapter 6. GParareal II: application to PDEs

10° .
Fine - Parareal

—— Fine - GParareal

105+

100

(b)

Figure 6.1: Numerical results obtained solving the viscous Burgers’ equation (6.1)
over (z,t) € [-1,1] x [0,5]. (a) Solution v(z,t) obtained using the fine solver. (b) The
maximal errors between solutions from Parareal and GParareal vs. the fine solution,
having converged in 9 and 4 iterations, respectively.

are always changing (see Figure 6.1(a)) and so the instabilities do not arise. One
way to avoid these numerical issues could be to remove input data points that
are too close (using some pre-defined radius) to one another—although we did not
test this here. On a similar thread, we attempted to discretise the spatial domain
using pseudospectral methods (Trefethen, 2000), where spatial points are designed to
cluster near boundaries (where interesting dynamics often occur appear). This meant,
however, that data points were again too close to one another and so numerical
instabilities arose. One thing to investigate in the future is whether alternative
spatial discretisation methods (e.g. finite elements, finite volume) are compatible
with GParareal and whether there are ways to avoid these numerical instabilities.

In the following experiments, we set N = d = 128, L = 1, v = 1072, integrate
over t € [0, 5], and select solvers Far = RK8 and Gar = RK1. In Figure 6.1, we
solve (6.1) using Nr = 256,000 and Ng = 512 time steps—the stopping tolerance
for Parareal is set to ¢ = 1075, Figure 6.1(a) illustrates how the (periodic) initial
condition vy(z) = & (cos(37z) + 1) (henceforth referred to as “IC1”) is propagated
to the right (in space) and diffuses over time. In Figure 6.1(b), we see the solution
error following convergence of Parareal and GParareal—notice that while the error
from GParareal is worse than Parareal, it does converge in over half the iterations (4
versus 9). This again demonstrates that the emulation process in GParareal works
very well for a much larger system of equations than has been previously tested.
More detailed numerical results for these simulations are shown in the first row of
Table 6.1(a-b). The second rows of these tables are results obtained when solving for
a different initial condition vo(z) = 3(cos(37wz) + 1) (referred to as “IC2").

What is noticeable from the GParareal simulations of IC1 and IC2 is that even

though speedup exceeds that of Parareal in both cases, it is severely hindered

124

6.2. Numerical experiments: nonlinear PDEs

Table 6.1: Numerical wallclock time, speedup, and efficiency results obtained solving the
viscous Burgers’ equation (6.1) with GParareal for different initial conditions and legacy
data—refer to the main text for details of each of the problems solved. Theoretical results
calculated using (2.11)—(2.13) and (5.17)—(5.19) are shown in brackets. All timings are
measured in seconds and have been averaged over five independent simulations.

‘ Problem H N ‘ kpam Tg ‘ Tr ‘ Tep ‘ Tserial ‘ Tpara Spara Epara
IC1 128 9 4.70E—5 | 72.22 9.24E3 | 754.78 (650.04) | 12.25 (14.22) | 0.10 (0.11)
1C2 128 10 4.70E—5 | 72.34 | — | 9.27E3 | 858.00 (723.42) | 10.79 (12.80) | 0.08 (0.10)

(a) Parareal results

| Problem | N [koraa | To | Tr | Tor | Taiw | Torw Sopws | Hopas
101 128 | 4 | 470E—5 | 72.22 | 212.76 | 9.24E3 | 528.82 (501.67) | 17.48 (18.43) | 0.14 (0.14)
102 128 | 5 | 470E—5 | 72.34 | 368.02 | 9.27E3 | 774.32 (729.74) | 11.96 (12.69) | 0.09 (0.10)
IC2(L) | 128 | 5 | 7.30E-5 | 71.88 | L50E3 | 9.20E3 | 1.89E3 (L.86E3) | 4.87 (4.95) | 0.04 (0.04)
IC2(LHS) || 128 | 4 | 8.20E—5 | 72.64 | 1.20E3 | 9.30E3 | 1.55E3 (1.49E3) | 6.00 (6.24) | 0.05 (0.05)

(b) GParareal results

‘ Problem H N ‘ kGpara Tg ‘ Tr ‘ Tap ‘ Tserial Tapara SGpara EGpara
IC1 128 4 6.50E—5 | 72.06 | 54.79 | 9.22E3 | 367.91 (343.06) | 25.07 (26.89) | 0.20 (0.21)
1C2 128| 5 | 6.00E-5|74.33 | 90.91 | 9.51E3 | 501.02 (462.62) | 19.00 (20.57) | 0.15 (0.16)
1Ic2L) [128| 5 | 6.90E—5 | 72.02 | 366.64 | 9.22E3 | 791.23 (726.77) | 11.65 (12.68) | 0.09 (0.10)
IC2(LHS) || 128 4 6.20E—5 | 72.09 | 256.06 | 9.23E3 | 569.89 (544.46) | 16.19 (16.95) 3 (0.13)

(c) Optimised GParareal results

by size of Tgp—accounting for approximately 40% and 48% of the total runtime
TGPara, respectively. Clearly, the proportion of time spent on GP optimisation and
querying is far too high (compared to Tr) and so we need to optimise the way
GParareal carries out the emulation process. If we delve deeper into the breakdown
of Tgp itself (for IC1) we find that 15% of the GP runtime is due to optimisation
of hyperparameters and 85% is due to querying during the PC step (similar results
for IC2). Hyperparameter optimisation is relatively cheap due to the low amount of
acquisition data and because the process has been parallelised across the dimensions
d, i.e. we optimise for each scalar output GP in parallel (recall Section 5.2.2). While
querying the GP in the PC step, i.e. calculating the Gaussian posterior, is by itself
computationally cheap, it requires the inversion (or rather Cholesky decomposition)
of a covariance matrix each time—recall (5.5) and (5.6). This process is repeated
sequentially on up to N time slices, d GPs, and k iterations, leading to the excessively
large GP runtimes we see in Table 6.1(b).

One way to avoid the repeated inversion of the same covariance matrix at

125

Chapter 6. GParareal II: application to PDEs

each time slice ¢, in (5.5) and (5.6) is to pre-compute its Cholesky decomposition
immediately following the optimisation of the hyperparameters. We calculate and
store the decomposition for each of the d GPs, ready to be called in the PC step'.
This will reduce the total number of Cholesky decompositions required in the PC
step from O(kdN) to O(k). In the first two rows of Table 6.1(c), we again solve
Burgers’ equation for IC1 and IC2 using this newly optimised version of GParareal.
In both cases, we immediately see that Tgp decreases by a factor of four, leading to
a dramatic 50% increase in speedup. The GP emulators now account for 15% and
18% of total runtime Tgpara, respectively. As discussed in Section 5.1.3, these results
highlight just how important it is to include training runtimes when using any kind
of learning method within a PinT simulation.

In the third rows of Table 6.1(b-c) are results from solving Burgers’ equation
for IC2 using the 506 legacy data points obtained from solving for IC1 (denoted
“IC2(L)”). As before, the optimised version of GParareal cuts the GP runtime down
by a factor of four compared to the non-optimised version, doubling the realised
speedup. However, the use of the legacy data did not result in a reduction in the
number of iterations (k = 5) and so speedup is actually lost—compare speedup in
rows two and three in Table 6.1(c). This loss is directly attributed to the higher
optimisation/conditioning costs incurred by using additional training data, indicating
that legacy data is only really useful when it results in a reduction in k.

This effect can be seen when we use legacy data generated from Latin hypercube
sampling? (LHS). To do this, we generate 506 points using the LHS scheme and
propagate each one using both Far and Gar (can be done in parallel). Note,
however, that with only N = 128 processors available, this data generation step
took approximately the same amount of time as four Fap runs to generate (i.e.
506/128 =~ 3.95)—equivalent to &~ 290 seconds of runtime. Although this cost is not
accounted for in our runtime calculations, it is important to remember that data
generation is not “free”—something that is often assumed in other learning-based
PinT methods (Agboh et al., 2020; Nguyen and Tsai, 2022; Yalla and Engquist,
2018). In any case, the results (IC2(LHS)) are in fact an improvement over the
IC2(L) experiment, with convergence occurring in 4 iterations instead of 5—see
Table 6.1(b-c), final row. While this demonstrates the effectiveness of using legacy
data to reduce k, the speedup generated is still less than that obtained without the
legacy data due to the high training costs.

I This will of course require the storage of d lower triangular matrices each iteration, however,
given that these matrices were previously being calculated and discarded each iteration anyway, it
will not lead to an overall increase in memory requirements.

2Latin hypercube sampling is a method of generating near-random samples from a d-dimensional
unit hypercube [0, 1]%. If one partitions the unit hypercube into s smaller (equal size) hypercubes,
then LHS will return s samples with each one lying in its own unique smaller hypercube (McKay
et al., 1979). For example, if d = 1 then there should be one unique sample in each of the s
subintervals (0,1/s), (1/s,2/s),...,(1 —1/s,1).

126

6.2. Numerical experiments: nonlinear PDEs

_ 102 i

2 —e—1C2

& —»—IC2(L)

E 103t —e—IC2(LHS) | |

£ 10l

fos

—f 10

= 107 : : : : :

0 1 2 3 4 5 6
L

Figure 6.2: MPSD at each iteration k in simulations of GParareal when solving
Burgers’ equation (6.1). Results obtained when solving problems IC2, IC2(L), and
IC2(LHS) (see Table 6.1(c)). The dashed black line indicates the stopping tolerance
e=10"6.

Finally, we briefly examine the MPSD (recall Section 5.4) of the GP emulators
used in the IC2, IC2(L), and IC2(LHS) experiments from Table 6.1(c). The MPSD
at each iteration of these experiments is plotted in Figure 6.2, showing that the
“accuracy” of the IC2 and IC2(L) GP emulators are very similar. We note that the
MPSD is not a true measure of emulator accuracy but rather an indicator of accuracy
close to the locations at which the emulators are queried. In the IC2(LHS) case, we
see a slight improvement in accuracy due to the way that the data samples have been
drawn near-uniformly across the unit hypercube, suggesting that the LHS legacy

data is beneficial for GParareal in this particular example.

6.2.2 Two-dimensional FitzHugh—Nagumo model

We now solve a larger system, examining how GParareal performs as we increase the
number of spatial points d used in the discretisation of our PDE system. We will
use the optimised version of GParareal discussed in previous section to solve the 2D
FHN model:

PDEs w=aVv+v—1vi—w—c
) (x,t) € (=L, L)? x (to,T)
wy =7 (BV W+ v — w)

ICs v(x, tg) = vo(x)

x € [-L,L]?
w(m,to) = wo(a:)
BCs v((zx,~L),t) =v((z,L),?) (6.3)
v((=L,y),t) = v((L;y),1)
") t € ltog,T]

Chapter 6. GParareal II: application to PDEs

for v(x,t) and w(x,t) over a square domain. Note we have only listed the boundary
conditions for v(x,t)—identical conditions are required on w(x,t). This system is
a spatially-dependent extension of the FHN model seen in (5.21). We denote the
Laplacian V20 = v, + vy, and fix parameters (a, b, ¢, 7) = (2.8E—4,5E—3,5E—3, 10)
(Krémer et al., 2022).

We discretise both spatial dimensions using d equally spaced points, defining v =
(v((z0,90),t)s -« -, v((d=1,90)s), - - -, v((T0, Yd—1), 1) - - -, (20, Ya—1), 1)) (similarly
for w). We will denote the Kronecker product of matrices A and B, of dimensions
fxmandr X s, as

a B - armB
A® B = : KR : ;
a1 B - apmB

which is a block matrix of dimension #r x ms. Using this definition we can write the
differentiation matrices as Dy, = I; ® Dﬁ? and Dy, = Dg) ® Ig. This then allows
us to write (6.3) as the following system of d = 2d> ODEs

dv
— =a(Dye + D v+v—v3—w—cl,
g = Pz D) t € (to, T).

dw
% = T(b(Da;x + Dyy)w +v - ’l,U) s
1
0.5
= 0
-0.5
1
(a) v(x,0) (b) v (¢) v(x,100)
1
0.5
> 0
-0.5
,1~
(d) (0) (e) (90, 8.5) (f) w(m, 100)
Figure 6.3: Numerical solutions obtained solving the 2D FHN system (6.3) over
€ [~1,1]? at times (a,d) t = 0, (b,e) t = 8.5, and (c,f) ¢ = 100 using the fine solver
with Nz = 51,200. Solution values for v(x,t) (top panels) and w(x,t) (bottom panels)
are coloured from blue (—1) to green (+1) with contours representing zero values.

128

6.2. Numerical experiments: nonlinear PDEs

Table 6.2: Numerical wallclock time, speedup, and efficiency results obtained solving
the 2D FHN system (6.3) with (a) Parareal, (b) optimised GParareal, and (c) further
optimised GParareal for increasing spatial resolution d. Theoretical results calculated
using (2.11)—(2.13) and (5.17)—(5.19) are shown in brackets. All timings are measured
in seconds.
ERENEE | Tor | T | Tpomn Spars Epaa
128 6 | 8.90E—5 | 200.08 | — | 1.02E5 | 1.51E3 (1.20E3) | 67.93 (85.31) | 0.13 (0.17)
200 5 | 1.13E—4 | 26455 | — | 1.35E5 | 1.60E3 (1.32E3) | 84.63 (102.37) | 0.17 (0.20)
288 6 | 1.43E—4 | 34273 | — | 1.75E5 | 2.42E3 (2.06E3) | 72.51 (85.31) | 0.14 (0.17)
392 5 | 1.78E—4 | 436.41 | — | 2.23E5 | 2.44E3 (2.18E3) | 91.40 (102.37) | 0.18 (0.20)
512 5 | 1.75E—4 | 539.54 | — | 2.76E5 | 2.97E3 (2.70E3) | 92.93 (102.38) | 0.18 (0.20)
‘ 20000 H 3 ‘ 2.12E-1 ‘ 2445.90 ‘ ‘ 1.25E6 ‘ 9.91E3 (7.77E3) | 126.35 (161.15) | 0.25 (0.31)
(a) Parareal results
‘ d H kcpara Tg ‘ Tr ‘ Tap ‘ Terial ‘ Tapara SGpara Ecprara
128 3 1.64E—4 | 199.86 | 5.23E2 | 1.02E5 | 1.28E3 (1.12E3) | 80.18 (91.11) | 0.16 (0.18)
200 1.89E—4 | 264.09 | 8.39E2 | 1.35E5 | 1.80E3 (1.63E3) | 75.27 (82.89) | 0.15 (0.16)
288 | 4 | 2.22E-4 | 341.99 | 2.40E3 | 1.75E5 | 3.97E3 (3.77E3) | 44.06 (86.41) | 0.09 (0.09)
302 | 5 | 271E—4 | 434.38 | 5.63E3 | 2.22E5 | 8.06E3 (7.80E3) | 27.61 (28.51) | 0.05 (0.06)
512 4 2.85E—4 | 536.99 | 4.38E3 | 2.75E5 | 6.74E3 (6.52E3) | 40.82 (42.12) | 0.08 (0.08)
(b) Optimised GParareal results
‘ H kGpara Tg ‘ TF ‘ Tap ‘ Tierial ‘ Tpara Scpara Ecpara
128 | 3 | 1.54E—4 | 199.82 | 4.99E2 | 1.02E5 | 1.26E3 (1.10E3) | 81.21 (93.13) | 0.16 (0.18)
200 || 3 | LOIE—4 | 265.17 | 7.08E2 | 1.36E5 | 1.66E3 (1.50E3) | 81.76 (90.27) | 0.16 (0.18)
288 | 4 | 2.27E—4 | 343.82 | 1.77E3 | 1.76E5 | 3.37E3 (3.15E3) | 52.23 (55.95) | 0.10 (0.11)
392 5 2.70E—4 | 437.42 | 4.02E3 | 2.24E5 | 6.49E3 (6.20E3) | 34.53 (36.11) | 0.07 (0.07)
512 | 4 | 2.94E—4 | 541.36 | 3.23E3 | 2.77E5 | 5.61E3 (5.40E3) | 49.43 (51.35) | 0.10 (0.10)
(c) Further optimised GParareal results

In the following experiments, we fix N = 512, L = 1, integrate over ¢ € [0, 100]

and use solvers Far = RK8 and Gar = RK1 (the stopping tolerance is again

e=10"°6

conditions chosen uniformly at random such that v(0), w(0)

). We use N = 5.12 x 108 fine and Ng = 2048 coarse time steps with initial
€ [o, 1}d2 (but fixed to

be consistent across experiments). In Figure 6.3, we plot solutions to (6.3) using

a total of d = 20,000 points in space (d = 100), illustrating how patterns begin to

129

Chapter 6. GParareal II: application to PDEs

form as time progresses.

Table 6.2(a-b) displays results obtained when solving the 2D FHN system (6.3)
for increasing spatial resolution d when using Parareal and GParareal. The first
thing to notice is that kgpara < kpara for each d (ignoring the d= 20,000 case for the
moment), demonstrating once again that emulation can accelerate convergence. Only
in the d = 128 case do we see this translate into improved speedup over Parareal.
For d > 128, we observe that speedup drops off dramatically, driven purely by large
values of Tgp which account for between 47 — 70% of the total GParareal runtime in
these experiments.

To again try and tackle the issue of high GP runtimes, we “further optimise” the
implementation of GParareal by storing the distance matrices used in the calculation
of the covariance matrices K (x,x). In short, calculating the (squared Euclidean)
distance matrix (recall (5.2) for the 1D case) between points in the input dataset
is computationally expensive once the dataset & (and d) becomes large. Therefore,
we now pre-calculate these distances once per iteration to be used in the covariance
kernel function whenever required during hyperparameter optimisation/querying. We
can see in Table 6.2(c) that this helps reduce Tgp (more when d is large), resulting

in speedup increases of up to 25% in the best case (d = 392).

Even after making these further optimisations we can see that the speedup results
from GParareal are still far below those attained by Parareal for increasing d—see
Figure 6.4(a). We illustrate the (still) significant proportion of total GParareal
runtime that posterior querying and hyperparameter optimisation take up in Fig-

ure 6.4(b). We can see that the hyperparameter optimisation takes around 20%

110 T T T T T 1 .
[Posterior querying
100 - 097 [Hyperparameter optimisation
______ S08h ——T¢r/TGPara

90 -

80

70+

Speedup

60 -

50 -

—#— Parareal (theory)
40 | |- -© - Parareal (numerical)
—#— GParareal (theory)

30 | |- © - GParareal (numerical)

Fraction

‘ . ‘ ‘ . 0
128 200 288 392 512 128 200 288 392 512
d d

(a) (b)

Figure 6.4: (a) Numerical speedup results from Parareal (dashed red) and GParareal
(dashed blue) plotted with theoretical results (solid), calculated using (2.12) and (5.18),
respectively. (b) Fraction of GParareal runtime Tgpar, taken up by querying the GP
posteriors (blue), the hyperparameter optimisation (red), and their sum (solid black).
Parareal results from Table 6.2(1) and both sets of GParareal results from Table 6.2(c).

130

6.3. Discussion and further work

of runtime and is (approximately) independent of d because it is carried out in
parallel for each GP. There does not seem to be much room for improvement in
the current implementation without switching to alternate optimisation routines or
perhaps increasing tolerances in the routine itself (which may lower the accuracy
of the emulators). We can clearly see that fraction of time the posterior querying
takes up does, however, increase with d because the total number of times GParareal
queries the emulators is O(kdN). This includes the savings made when storing the
Cholesky decompositions. In the worst case, this takes up over 40% of runtime and
so finding a way to eliminate or reduce the dependence on d is paramount, although
unclear at present.

Notice also that GParareal is quite severely hindered in terms of how large
d can be. The solutions in Figure 6.3 were calculated (using the fine solver) for
d= 20,000, whereas the most GParareal can solve for is d < N = 512. While we
could increase N to increase d (which would require more processors), GParareal
would still suffer from the extremely high GP runtimes we have seen here. While
one can always interpolate lower spatial resolution solutions onto a higher resolution
grid, any fine-scale solution behaviour will almost certainly be lost. The final row of
Table 6.2(a) shows that Parareal faces no such restriction on the size of d, returning
excellent speedup results for d= 20,000 (note that to account for the increase in
spatial resolution, we had to increase the number of coarse steps to Ng = 1.024 x 10°

for this particular simulation).

6.3 Discussion and further work

In this chapter, we extended our numerical investigation of GParareal by applying
it to two nonlinear PDE problems: the viscous Burgers’ equation (6.1) and the 2D
FHN system (6.3). When solving Burgers’ equation for different initial conditions
(using 129 spatial points), we found that GParareal converged in at least half the
number of iterations compared to Parareal, leading to additional numerical speedup.
These speedup results were severely limited by the (serial) cost of training/querying
the 129 GP emulators, which took up over 40% of the total GParareal runtime. To
optimise the process, we modified GParareal so that it would store the Cholesky
decomposition (one for each emulator) of each covariance matrix K (x,x) following
hyperparameter optimisation—avoiding the need to recompute it each time the
emulators are queried. While this did reduce GP runtimes by up to four times and
boosted parallel speedup in all cases, the emulation process still accounted for over
15% of total GParareal runtime.

In the cases where legacy data was used, coming from either a previous solve or
from LHS, the GP training costs rose significantly—even when storing the Cholesky

decompositions. We found that using legacy data (in addition to acquisition data)

131

Chapter 6. GParareal II: application to PDEs

each iteration, did not reduce the iteration count significantly enough (if at all) to
reduce GParareal runtimes, leading to severe speedup degradation. This leads us to
conclude that legacy data is most useful only when it will significantly reduce the
iteration count (as we saw in Section 5.3), although this will be unknown a priori
to simulation. One option to reduce training times could be to use the legacy data
during only the first iteration to try to embed some of the valuable legacy information
in the solution early on, without having to keep reusing it at high cost during future
iterations. The idea is that wasteful training may be taking place each iteration if
many of the legacy data points lay “far away” from the exact solution—recall the

discussion in Section 5.2.4.

Using up to 512 spatial points, we found that, once again, GParareal can converge
in fewer iterations than Parareal when solving the 2D FHN system but took a higher
overall wallclock time to do so. We found that with increasing d, the number of
posterior queries made to the GP increases and so even when storing Cholesky
decompositions and distance matrices, the total emulation runtimes ran in excess
of 60% of the total GParareal runtime. The main takeaway from these numerical
experiments is that the importance of incorporating training runtimes is paramount
when trying to quantify the performance of PinT methods that make use of learning-
based methods. In retrospect, it would also make sense to go back and apply this
(further) optimised version of GParareal to the experiments from Chapter 5 to observe

their impact on simulation runtimes and speedup results.

A further feature hindering GParareal is that it is limited to solving systems of
size d < N in order to carry out hyperparameter optimisation for each of the GP
emulators in parallel. This limited us to solving the 2D FHN system on a 16 x 16
grid, whereas Parareal could scale to grids of size 100 x 100 (and higher) without
suffering such issues. While one could in theory solve systems of size d > N, it would
require training the GP emulators in parallel batches, e.g. if d = 2N then one trains
d GPs then another d GPs straight after. However, this would most likely lead to

excessively large runtimes as mentioned before.

The key to unlocking the true potential of GParareal is to identify an emulation
method (not necessarily a GP) that is cheap, accurate, and scales well with high-
dimensional datasets. This draws a striking similarity to the quest to find cheap
and accurate coarse solvers for Parareal—recall the discussion in Section 5.1.3. In
GParareal, the emulators are re-trained using all acquisition data (and legacy data
if available) each iteration, leading to extremely high runtimes. A better solution
would be to find an emulator that can avoid being re-trained on the entire dataset
each iteration but rather can re-train itself (quickly) in light of only the new data
(a more “online” type of learning-based method). In addition, one could try to
further reduce GP costs by selecting a subset of the data that “best covers” the

full dataset or perhaps filter out data points that lay “far away” from the exact

132

6.3. Discussion and further work

solution (particularly those that do not improve the accuracy of the emulator near
the solution). This could be done using a clustering algorithm (or similar), however,
the benefits of any faster emulation would of course need to outweigh any decrease in

emulator accuracy that may be detrimental to the final iteration count in GParareal.

133

Chapter 7

Discussion and outlook

The primary focus of this thesis has been the development and testing of probabilistic
PinT algorithms for more efficiently solving computationally expensive IVPs. The
aim was to accelerate the convergence of Parareal, a well-studied deterministic PinT
algorithm, to solve IVPs faster and generate probabilistic solutions that capture
numerical uncertainty. To do this, we used existing sampling- and learning-based
techniques from PN to harness the valuable information contained within the fine
and coarse solution (acquisition) data generated during a Parareal simulation. In
this final chapter, we will discuss the contribution of these algorithms towards the
aims set out in Chapter 1 and subsequently draw conclusions regarding their future

viability as PinT algorithms.

7.1 Contribution toward original aims

7.1.1 SParareal

Inspired by the first PinT idea proposed by Nievergelt (1964), we developed SParareal,
a sampling-based PinT method that randomly perturbs solutions in Parareal to try
to more efficiently explore the solution space. It works by drawing M samples (at
each time slice) from probability distributions, constructed using the most recently
obtained acquisition data, and propagating them forward in time (in parallel) using
the fine solver. The set of samples yielding the “most continuous” trajectory over
time is then used in the correction term in Parareal’s PC, with the hope of reducing

the number of iterations k£ until convergence.

Conclusion 1. SParareal should always converge in the same number of

iterations as Parareal or fewer (assuming a minimum level of sampling).

In Chapter 3, we derived, analysed, and tested SParareal on a number of low-
dimensional nonlinear ODEs (Aim I), observing that it could indeed converge in

fewer iterations than Parareal (Aim II). For all IVPs tested we observed that as

134

7.1. Contribution toward original aims

the number of samples M increased, the expected number of iterations required
to converge decreased (we took the expected value due to the stochastic nature of
the algorithm). With a computational complexity almost identical to Parareal, this
meant that SParareal could locate a solution in a shorter wallclock time compared
to Parareal if it converged in fewer iterations.

The reason why we expect SParareal to perform no worse than Parareal is because
it uses the deterministic PC solution (recall Section 3.2) as well as the random samples
to explore the solution space. In the worst case, this means that even if none of the
random samples are chosen as the optimal solution candidates, SParareal is able
to fall back and utilise (values close to, but not exactly) the deterministic Parareal
solutions. In the best case, a combination of the samples and PC solutions are used,
leading to accelerated convergence. We note the minimum level of sampling due to
the exceptional case in Appendix C.2 where SParareal took one more iteration to
converge than Parareal when M = 2 samples were taken—though this occurred in

less than 2.5% of simulations.

Conclusion 2. The probabilistic solutions generated by SParareal are accurate

(in mean-square) with respect to the serially obtained fine (exact) solution.

In Chapter 4, we derived superlinear and linear mean-square error bounds to verify
that the probabilistic solutions (Aim IV) obtained by SParareal are accurate (Aim III).
We found that using additive noise, i.e. state-independent perturbations, in SParareal
was not enough to guarantee accelerated convergence. In addition, this approach
generated solutions with a hard lower bound on their numerical error, proportional
to the bound on the absolute moments of the perturbations used—recall Remark 4.9.
To obtain a higher degree of accuracy (as well as accelerated convergence), the results
showed that the sampling rules outlined in Section 4.1.2, i.e. the state-dependent
perturbations, were required. These rules ensured that the probability distributions
contracted around the exact solution as the SParareal iterations progressed, ensuring
increasing accuracy. This meant that following multiple simulations of SParareal, we
could obtain a distribution of solutions to the IVP just as the sampling-based ODE
solvers proposed by Conrad et al. (2017) did. While these distributions do not really
have any real mathematical interpretation, they could be useful when exploring IVP
solutions that exhibit chaotic behaviour or exist near stable/unstable manifolds.
With regard to which sampling rule should be used in SParareal, we found that
as the level of sampling increased they all performed similarly. That being said, the
choice of sampling rule is flexible with respect to the particular IVP being solved.
For example, one could linearly combine different sampling rules or perhaps choose a
particular distribution family that satisfies known properties of the IVP solution (e.g.
non-negativity). We do, however, suggest that the marginal standard deviations be

chosen such that they contract as the iterations progress (for the reasons mentioned

135

Chapter 7. Discussion and outlook

above).

Conclusion 3. SParareal can be used to solve any large-scale IVP that Parareal

is suitable for.

The reasoning behind this final conclusion (Aim V) is that Parareal could be slightly
modified to enable idle processors (following the first iteration) to carry out sampling
and propagation at little to no extra computational cost. The performance of this
SParareal-type scheme should be no worse than standard Parareal (ideally better
with the additional sampling, recall Conclusion 1) and, even if there is no reduction in
k, the algorithm will return a stochastic trajectory—beneficial for reasons mentioned
above. If additional processors (beyond the one required for each time slice) are
available, then even more sampling can be carried out and one can deploy standard
SParareal.

We expect SParareal to be able to solve IVPs that Parareal is suited for and
most likely face issues with those that Parareal struggles with (e.g. non-diffusive
IVPs) due to its almost identical structure. As the size of the IVP (i.e. the number
of ODEs being solved) becomes large, however, we expect the sampling to become
less efficient due to the curse of dimensionality. Therefore to reduce the number of
iterations, increasingly more samples will be required to explore the solution space
effectively. As suggested before though, there is no harm (in terms of computational
cost) in carrying out sampling using idle processors given there is a (small) chance of
faster convergence.

With SParareal we have demonstrated that using (guided) random perturbations
can indeed help accelerate the convergence of Parareal and return probabilistic
solutions. While the sampling process may not scale well for large-scale IVPs, we
believe there is no harm in putting idle processors in Parareal to good use by sampling
and exploring more of the solution space. In the future, a particularly interesting
question to answer would be to determine which algorithm to use given a fixed
number of, say N M, processors. For a given IVP, how does Parareal perform when
using N M processors (and therefore NM time slices) compared to SParareal, which
will use M processors to carry out sampling in N each of the N (larger) time slices?
Answering this would help determine which algorithm more efficiently uses each of
its processors and possibly how to more optimally assign samples throughout the

time interval.

7.1.2 GParareal

The GParareal algorithm is a learning-based PinT method that uses GP emulators to
infer the correction term in Parareal’s PC. Each iteration, the emulators are trained

(i.e. the kernel hyperparameters are optimised) using all available acquisition and

136

7.1. Contribution toward original aims

legacy data from prior simulations (if any). Having avoided “throwing away” valuable
solution data like Parareal (and SParareall), the emulators are then ready to be
queried in the PC step, ideally providing more accurate corrections than Parareal

and enabling more rapid convergence.

Conclusion 4. While GParareal did achieve accelerated convergence over
Parareal for most of the IVPs tests, realising an increase in numerical speedup
1s contingent on the total GP emulator runtime being small compared to the

fine solver.

In Chapters 5 and 6, we derived and analysed GParareal (Aim I), demonstrating that
it could converge in fewer iterations than Parareal using only acquisition data for a
number of different nonlinear ODEs and PDEs (Aim II). Convergence in even fewer
iterations could be achieved using legacy data (from prior simulations) in the ODE
experiments, however, this proved less effective for the PDE problems (even using
pseudo-randomly generated legacy data). Results suggested that the acquisition data
rather than legacy data was most effective at accelerating convergence in GParareal
(especially since additional training time was required for simulations using legacy
data). In line with the complexity analysis, experiments verified that realising the
maximum possible speedup with GParareal was contingent on the cost of training
the GP emulators being small (compared to the cost of running the fine solver).
The PDE experiments in Section 6.2 showed that even when training the d
emulators in parallel and storing distance matrices/Cholesky decompositions (used
repeatedly during querying in the PC), the emulation process still took up large
proportions of the total GParareal runtime. In addition, we found that the emulation
process worked best (learned Far — Gar most effectively) for IVPs with more slowly
varying/smoother dynamics (see Sections 5.3.1, 5.3.3, 6.2.1, and 6.2.2) and less well for
IVPs that exhibited more fast moving/chaotic dynamics (recall Sections 5.3.2, 5.3.4,
and 5.4). We will continue discussing the implications surrounding the emulation

process in Conclusions 6 and 7.

Conclusion 5. The deterministic solutions generated by GParareal are accu-
rate with respect to the serially obtained fine (exact) solution. In fact, accuracy

is proportional to the fill distance of the training dataset.

In all numerical experiments, the solutions obtained by GParareal were accurate
with respect to the fine solver solution and of a comparable order of accuracy to
the solutions obtained by Parareal. Using an existing result on the consistency of

the GP posterior mean, we derived an error bound (in Section 5.2.4) showing that

'Note that we did not directly compare SParareal and GParareal because we expected the
performance of SParareal (for low sample numbers at least) to be similar to that of Parareal—recall
Conclusion 1.

137

Chapter 7. Discussion and outlook

the accuracy of solutions is directly proportional to the fill distance of the training
dataset (Aim III). This means that each iteration (as the size of the training set
increases), the fill distance should decrease, thereby increasing the accuracy of the
emulator and the GParareal solution—this agreed with numerical simulations.
While we did make use of learning-based probabilistic methods to develop
GParareal, it did not return probabilistic solutions to the IVPs themselves (Aim
IV). This is due to the fact that we approximate the GP posterior in (5.14) by its
(deterministic) expected value, ignoring the posterior variance, in order to propagate a
single value through the PC update in (5.16¢). Ideally, we would be able to propagate
the full Gaussian posterior through the PC update to return a probabilistic solution,
however, we were unable to identify a (computationally efficient) method to do this.
Instead of taking the mean, one way to (forcibly) obtain probabilistic solutions in
GParareal could be to draw a random sample from the Gaussian posterior in (5.14),
however, it is unclear how this scheme would perform or even if it would converge to
the correct solution (especially if the posterior variance at the sampling location is
large). Further investigation is required to identify how to embed a computationally
efficient method for propagating uncertainty within the Parareal framework (or

perhaps another PinT method).

Conclusion 6. Accounting for data generation, hyperparameter optimisation,
and querying costs is of the utmost importance when simulating IVPs using

learning-based PinT methods.

The purpose of the PDE experiments in Section 6.2 was to quantify the impact of
GP emulation costs on realisable parallel speedup from GParareal-—comments on
which were notably absent in other learning-based Parareal variants (refer back to
Section 5.1.3). Numerical experiments showed that even if GParareal converges in
fewer iterations than Parareal, which saves a number of expensive Far runs, the
maximum obtainable speedup is drastically reduced by the cost of running the GP
emulators. By including these costs in our computational complexity analysis, we
hoped to give a more clear picture of the viability of using learning-based methods
to accelerate PinT simulations.

These costs are so critical because they scale cubically (in our naive GP implemen-
tation) with the number of training data points (which increases each iteration, more
so when using legacy data) and with the dimension of the system d (as more posterior
querying required). One could try to exploit some well-known GP approximation
methods to reduce computational runtimes (recall Section 5.2.3), however, care must
be taken not to reduce the accuracy of the emulators too much or else GParareal
will not achieve accelerated convergence. Alternatively, we could try to reduce the
amount of training data used each iteration by somehow selecting a subset of the

acquisition data that is the “most informative”. Again, further experimentation is

138

7.2. Outlook for probabilistic PinT algorithms

required to determine whether or not this leads to a reduction in the accuracy of the

emulators and therefore GParareal performance.

Conclusion 7. Before G'Parareal can begin solving large-scale IVPs, further
work is needed to find an emulation method that scales with the size of the

system d and is cheap enough to train accurately as the simulation progresses.

As we saw when solving the 2D FHN system in Section 6.2.2, GParareal is limited to
solving systems of relatively small size (d < 512). In addition to the GP costs, it can
struggle to accurately infer the correction term, which is a nonlinear d-dimensional
function, because the fill distance is difficult to restrict when d is large. One can use
more data, by increasing N or using legacy data, however, GParareal will then suffer
the issues related to Conclusion 6. Although we did investigate using the Parareal
“fallback” in Section 5.4 to aid GParareal when the emulators were insufficiently
well-trained, questions still remain over how to set the fallback switching tolerance.
To try to improve accuracy in the GP further, one could try using a non-zero mean in
the GP prior, i.e. a function of the order of the error between Far and Gar—though
this would likely come with additional hyperparameter optimisation costs.

The key restriction hindering GParareal is that it can only solve systems of
size d < N as we require a processor for each emulator in order to train them all
in parallel. Clearly it is much more desirable to be able to solve systems of size
d > N just as Parareal can, however, it is unclear at present how to do this without
the GP runtimes spiralling out of control. One avenue to explore would be to use
dimensionality reduction techniques such as principle component analysis to reduce
the dimension of the training data and therefore the number of emulators required
in GParareal.

The GParareal algorithm has demonstrated that learning-based methods can
indeed harness solution data to accelerate the convergence of Parareal as long as
training costs remain small. The next natural step in its evolution is to assess how
alternative emulators (which need to be cheaper to train and scale better with d)
perform within the GParareal framework. The problem of finding the best emulators
will be akin to finding the best coarse solvers to use within Parareal and may possibly
require some process of trial and error. We believe, however, that with ever faster

and more accurate learning-methods becoming available, the search will not be long.

7.2 QOutlook for probabilistic PinT algorithms

In summary, the analytical and numerical work carried out in this thesis has demon-
strated that probabilistic methods can indeed make use of existing fine and coarse
solution data to improve the performance of the Parareal algorithm. We believe that

by tackling some of the aforementioned issues, the performance and scalability of

139

Chapter 7. Discussion and outlook

these algorithms can certainly be improved. The hope is that this will lead to more
efficient PinT algorithms that can avoid the need to re-simulate costly IVP solutions
from scratch and instead re-use existing solution data to reduce IVP simulation
runtimes. This should also help pave the way for a fully probabilistic PinT algorithm
that can return a posterior distribution over the solution to an IVP at any given time.
Having investigated using methods from PN within Parareal to achieve this goal, the
next step could be to look into the converse—how can PinT techniques be embedded
within existing sampling- or learning-based PN methods? In any case, we hope that
the ideas put forth in this thesis will contribute to the successful development of

future probabilistic PinT algorithms.

140

Appendices

A Rates of convergence

Here, we briefly recall some definitions on the rates of convergence of real sequences.
These rates will be referred to frequently in discussions on the convergence of Parareal,

SParareal, and GParareal.

Suppose {xj }ren, is a sequence, taking values in R?, that converges to * € R,
The convergence of this sequence is said to be linear if there exists r € (0,1) such
that

[®k11 —]|
@k — ||

for all k sufficiently large. Similarly, the convergence is said to be superlinear if

iy N®R =2
k—oo ||xp — x*||

2 T T T T
——zp =1+ (1/2)F ——azp =1+ kF
1
1.8F 10 i
107
3
1.6F N 107
N £ 108
1.4+
1071t
10-14
12¢ 0 2 4 6 8 10 127
k
1 A
0 2 4 6 8 10 12

Figure A.1: The sequences zy given in (A.1) plotted against &k (sequence (%) in red and
(74) in blue). Inset: corresponding absolute errors between the values of each sequence
and the limit z* = 1. Sequence (i) converges linearly whilst sequence (ii) converges
superlinearly.

141

Appendices

Note that || - || is some norm on R?. For example, consider the sequences
(i) xp =1+ (Y2)% and (i) 2 = 1+ k. (A.1)

Both sequences converge to x* = 1 with the first sequence converging linearly at rate
r = 1/2 and the second sequence converging superlinearly at rate (1/k+1)(k/k+1)¥. In
Figure A.1, we plot both sequences converging toward x* = 1 and the corresponding
error at each k, demonstrating linear and superlinear convergence (see inset plot).
Further details on other rates of convergence can be found in Nocedal and Wright
(2006).

B Proof of superlinear error bound for Parareal

Here, we state the proof of Theorem 2.2.
Proof. Define the error e := ||u(t,) — U¥||oo. Then, using (2.9c), that Far is the
exact solver (4.5), and adding and subtracting Gar(u(t,)), we obtain

exty = | Far(u(ts)) = (Gar(UN) + Far(Uy) = Gar(Uy)) + Gar(u(tn))|l
< |[(Far(u(tn)) = Gar(u(tn))) — (Far(Uy) = Gar(Uy)) llos
+[IGar(u(tn)) = Gar (U)o,
where the second line follows by the triangle inequality. Applying (4.7) to the first

term and the Lipschitz condition (4.8) to the second, we are left with the double

recursion

eflfl < Aef + Bel™ 0. < D+ Bel, (B.1)

where A = C1ATP*Y B = Lg, and D = CyA (Cy > 0 constant). This recursion
can be solved using the generating function method in Lemma D.3 (setting A = 0),

giving us the desired result. O

C Additional SParareal experiments

In the following sections, we present additional numerical experiments using SParareal.

C.1 Scalar Bernoulli equation

Consider the nonlinear nonautonomous Bernoulli equation

— —t C.1
b 14Tt (C.1)

142

C. Additional SParareal experiments

=
o
=)

T .
——Fine © SParareal * Purnr(!ul]

—o— Parareal

3.5
1072 —o— SParareal |]
3l - - - -Tolerance
—— | Exact — Fine |
- - - | Exact — SParareal | 5 104
2.5 - - - | Exact — Parareal | B
. o -6
;:_, 2 E 10
1.5F M 10
W = 1010 N\ N
0.5 10, 1012}
0 | o 1014
0 2 4 6 8 10 1 2 3 4 5 6 7 8
t k
(a) (b)

Figure C.1: (a) Analytical solution u; of (C.1) plotted against the serial Far solution
and a single realisation of SParareal. Inset: numerical errors of Far, SParareal, and
Parareal compared to u;. (b) Errors at successive iterations of Parareal (red) and
ten independent realisations of SParareal (blue). The dashed black line represents the
tolerance € = 1071, Both panels use SParareal with sampling rule 3 and M = 100.

with initial value u1(0) = 2 on t € [0,10]. We discretise using N = 20 time slices,
Ng = 20 and Nr = 2000 time steps. This equation (C.1) permits the analytical
solution uy(t) = (1 +¢)2/(t7/5 + t*/2 + t3/3 + 1/2), tending to zero as t — oo.
Observe the spacing between equidistant time steps of the true Far solution and
the SParareal solution to (C.1) in Figure C.1(a), highlighting the stiffness of the
solution at early times. Given the stopping tolerance ¢ = 107'°, we can see in
Figure C.1(b) how Parareal converges in k = 8 iterations deterministically while
SParareal converges in ks = 6 iterations for each of the ten independent realisations

shown.

Figure C.2(a) shows the estimated distributions of ks using sampling rule 1. As
expected, if M = 1, convergence is deterministic (i.e. Parareal is equivalent to
SParareal) and hence P(ks = 8) = 1. As M increases however, P(ks; = 8) decreases
rapidly to zero whilst P(ks < 8) increases from zero to one with just M ~ 5 samples.
This demonstrates that SParareal requires very few samples to begin converging
in fewer iterations than Parareal, and that ks assumes low values with increasing
probabilities for increasing M. The stiffness of (C.1) appears to demand much larger
values of M to continually reduce ks when compared to the non-stiff scalar example
in Section 3.3.1.

In Figure C.2(b) we report the expected values of ks for each sampling rule. This
shows that for low values of M, any of the sampling rules can be used to ‘beat’
Parareal. For larger M, however, rules 1 and 3 (centred around the fine solutions)
outperform rules 2 and 4 (which are centred around the PC solution). Further

testing revealed that varying the fine time steps within SParareal had little impact on

143

Appendices

—e—Rule 1

o o
(o]
T

Probability

=}
ES
T

E(k,) + 2sd(k,)

4 . .
NY Y k9 ,\P ,1/0 ,,)B Ve ‘)0 ,\90 ’190 ’500 100 101 102 103
Number of samples (M) Number of samples (M)
(a) (b)

Figure C.2: (a) Estimated discrete distributions of k4 as a function of M for sampling
rule 1. (b) Estimated expectation of ks as a function of M, calculated using estimated
distributions of k, for each sampling rule with error bars representing + two stan-
dard deviations sd(k;). Distributions were estimated by simulating 2000 independent
realisations of SParareal for each M.

performance. On the contrary, Figure C.3 shows how increasing the number of coarse
steps from 20 to 60 drastically decreases the probability of SParareal converging
sooner than Parareal. Increasing the number of coarse steps increases the accuracy
of the Gar solver, hence Parareal reaches the stopping tolerance in fewer iterations
k. This result suggests that whilst SParareal can still converge faster than Parareal
by using more samples, it works more efficiently for particular problems where k is
relatively large, i.e. problems in which a coarser Gar is used.

Finally, we calculated errors between the mean SParareal solution and the Far

0.9+
0.8+
0.7 +
- 0.6 |

o
w”

robability

P
N
»

0.3F
0.2+
0.1

0 §-o-o00 . L
10° 10t 102 10°
Number of samples (M)

Figure C.3: Estimated probabilities that kg is smaller than k as a function of M using
sampling rule 3. Each curve shows P(k; < 8) (black), P(ks < 5) (red), and P(ks < 4)
(blue) using coarse steps Ng = 20,40, 60 respectively—noting that Parareal converges
in k = 8, 5,4 iterations for these coarse steps respectively. As before, 2000 independent
realisations of SParareal were run for each M.

144

C. Additional SParareal experiments

Parareal error

Mean SParareal error |

Mean SParareal error 4 two std. devs.

1 1 1 I I

3 4 5 6 7 8 9 10
t

Error

b A W N B o kR N W B O
T ; T
I 1

o
-
N

Figure C.4: Errors of Parareal (red) and mean SParareal (black) solutions compared to
the Far solution. The mean error is obtained by running 2000 independent realisations
of SParareal with sampling rule 1 with M = 10—the confidence interval representing
the mean + two standard deviations is shown in light blue.

solution (Figure C.4). As expected, we observe that the mean solution attains

comparable accuracy to Parareal and the fine solution.

C.2 Square limit cycle system

Consider the system

% _ sin(u) <cosl(861) n cos(m)), (C.2a)
% _ _Sin(w)(cosl((;@) B cos(m)), (C.2b)

whose solutions, see Figure C.5(a), for initial values within the box [0, 7] x [0, 7],
converge toward a square-shaped limit cycle on the edges of the box (Hirsch et al.,
2013). The system is solved over ¢ € [0, 60], starting at u(0) = (3/2,3/2)7, using N =
30 time slices and Ng = 30 and Nx = 3000 time steps. As shown in Figure C.5(b),
Parareal takes k = 20 iterations to converge with tolerance ¢ = 10~8 whereas ten
realisations of SParareal take between 17 < ks < 19.

Contrary to the Brusselator system, Figure C.6(a) shows that sampling close to
the PC values (rules 2 and 4) yield lower expected values of ks. In this case, the
bivariate Gaussian outperforms the t-copula, however the reverse is true for rules
1 and 3. Results generated using uncorrelated samples were found to yield inferior
performance (not shown here). The detailed distributions of ks in Figure C.6(b),
using sampling rule 2, show a best performance of ks = 14 with 100 samples and
P(ks < 20) = 1 for M =~ 10. They do, however, reveal that in a limited number of
cases (using two samples) convergence occurs in ks = 21 iterations. This suggests
there may be a minimum number of samples required to beat the convergence rate

of Parareal for some systems—something to be mindful of in future experiments.

145

Appendices

T T T T T T 102 T
35 J Fine © SParareal % Parareal —oe— Parareal
—o— SParareal
3t 100 F - - - -Tolerance | 3
257 £ 107}
2f g
o 2
= 15 S 104k
2
Gl
1t 4 6
= 10
0.5
0Fr 10® premmmrestremereec e ermrende
-0.5
: 10710
05 0 05 1 15 2 2.5 3 3.5 0 5 10 15 20
Uy k

(a) (b)

Figure C.5: (a) Numerical solution of (C.2) over [0,60] using Far (black), Parareal
(red), and SParareal (blue). Note that only a subset of the solutions at times ¢ are
shown for clarity. (b) Errors at successive iterations of Parareal (red line) and ten
independent realisations of SParareal (blue lines). Dashed black line represents the
tolerance € = 1078, Note that both panels use SParareal with sampling rule 2 and
M = 20.

21 ‘ 1
——Rule 1
20 —&—Rule 2/ | 0.9+
—&—Rule 3 08l
& Rule 4
19] 0.7
< = t
< el L 0.6
«a 2
3 2 0.5
217)} <04
a [
161] o3
s 02
157 T o01f
14 " 20\,13&6000&000
10° 10 10 R N

Number of samples (M) Number of samples (M)
() (b)

Figure C.6: (a) Estimated expectation of ks as a function of M, calculated using
estimated distributions of ks for each sampling rule with error bars representing + two
standard deviations sd(k;). (b) Estimated discrete distributions of ks as a function of
M for sampling rule 2. Distributions were calculated by simulating 2000 independent
realisations of SParareal for each M.

146

D. Technical results for SParareal error bounds

D Technical results for SParareal error bounds

D.1 Standard results

Here we state some results that we make repeated use of.
Lemma D.1 (Peter-Paul Inequality). For any w,v € R% and § > 0, we have that
2] ull[lo]l < dlfull® + 6~ |o|%. (D.1)
Theorem D.2 (Binomial Theorem). For |z| < 1 and some m € N, we have that
1 S (i+m—1\
—_— = . D.2
e n() 02
=0
D.2 Generating function method

Here, we solve two recurrence relations using generating functions. These two variable
(“double”) recurrences crop up often in convergence analysis involving Parareal (and
other PinT) algorithms and have been used in a number of settings—refer to Gander
and Hairer (2008), Carrel et al. (2022), and Gander et al. (2022) for examples.

Lemma D.3. Let ef be a non-negative sequence and A, B, D, A € R be non-negative

constants. If €& satisfies

eﬁﬁ < Aef 4 Belt 4 A, ebi1 < D+ Bey, (D.3)

n

f07’2<k:<n<Nande§:0Vk>0, then

n—(
e < DAF 1Z<£+k >B£+Ak§:2 fl <£+]>A]‘Bg.
J=

Proof. For k > 1, define the generating function for e as

o0

x) = Zeﬁx". (D.4)
n=1
Multiply (D.3) by """ and sum from n equals zero to infinity to obtain
oo oo o0
Z ﬁiﬁxn—kl Z k Pl + Bzefflﬂ?n—i_l —I-AZCCH—H,
n=0
Zen+ anrl < sznJrl +BZ€1 n+1

Using (D.4), binomial theorem (D.2), and recalling that ef = 0 Vk > 0, we can write

147

Appendices

these expressions as

91 (@) S o0 -Bz WS T-pa- B

for |x| < 1, which can be solved iteratively to give

(2) < (Az)k—l Dx N Az kQ(Az)J
x) < .
Tk 1=Bz) (1-2)1-Ba) (I—a)(1-Ba) < \1-Bz
Re-arranging terms, this can be written as
< paktgh(L)1 Ak_2Aj gar(Ly
9r() < :”(1—395) =N JZ_; . (1—Bx) -z

The first term can be expressed as

DAkilmk<1 —1Bx>k 1 i 7 DAklxk(i <Z ' Ij : 1) (B‘r)i) (ix>

=0 =0
_ DAkl gk Z (Z (erIZ— 1>Bf>xm
m=0 \ /=0
L gy |
_DAk—IZ< () >B€>:L,n
n=k \ £=0

The first line follows by applying (D.2) twice, the second line using the Cauchy
product, and the third by setting n = m + k. The second term can be expressed as

A§ijj+l(1 —le>j+11 —r kz - (i <Z J;j) (Bmy) (293)

j=0 i=0

wlz <Z<€+j>Bg>:rm
o (zz<>)

n=j+1

k—

These steps follows as they did for the first term, except that we now set n = m+j+1

instead of n = m + k in the final step. Combining these expressions we get
oo

=Y ehan < DAk 1%(2(“’;‘1)3)90"

n=1

148

D. Technical results for SParareal error bounds

By equating the coefficients in ™ on both sides we obtain the bound. O

The initial condition (D.3) can be written differently depending on the available

information, i.e. one could instead use el <D= él, slightly altering (D.3).

Lemma D.4. Let é¥ be a non-negative sequence and A, B € R be non-negative

constants. If €* satisfies
el < Aék + BéF (D.5)

with initial conditions é° and é', then

rt bt 51k
ékgéo[A+\/A2+4B] .
2

Proof. Define the following generating function for é:

o0

g(z) = Z ek k.

k=0

Multiply (D.5) by 2**! and sum from k equals one to infinity to obtain
(0] o (o ¢]
ék+1xk+1 g AZékwarl + B Zékilx’ﬁkl.
k=1 k=1 k=1

Shifting indices, rearranging, and using the initial conditions we get

o0 01 _ A 51
g(x)zzékxk<€ (1-Az) +eéla
prd 1 — Az — Bx?

Expanding the right hand side in powers of 2*, the coefficients give us

1 - = =
Al G — [(Aéo + "V A2 + 4B — 2eM)\t
2V A2 + 4B

(—Ae® + OV A2 4 4B 4 2\,
where

A+ A2+ 4B

2

Al =
Without loss of generality, we use that A\; > Ao to simplify the bound and obtain
e < 0Nk,

which yields the desired result. O

149

Appendices

E The Lorenz96 system

The Lorenz96 system was proposed to study the predictability of a “toy” one-
dimensional atmospheric model (Lorenz, 1995)2. It is a system of d ODEs that model
the advection, dissipation, and external forcing of some scalar atmospheric quantity
u;(t) across a periodic array of “sites”, i =0,...,d —1 (d > 4), over time. Lorenz
suggested thinking of these sites as being spatial locations on a line of latitude around
the Earth. The periodicity means that the labelling of sites can be extended for
J € Z so that u;(t) = ugy;(t). The non-dimensionalised ODEs are given by

dui
dt

= ui,l(uiﬂ - uz;g) —u; +F over te [tU,T], with ui(to) = u? (El)

The free parameter F' is the forcing term, governing how difficult the system is to
solve—higher F' means more chaotic dynamics. Extensive bifurcation analysis of this
forcing term F' when fixed, or site-dependent, has been carried out by Kerin and
Engler (2020).

In Figure E.1, we solve the Lorenz96 system (E.1) for ¢ € [0,100] and fixed initial
conditions u;(0) € [0,1],7=0,...,49 (d = 50). We do this for three different levels
of forcing, F' € {1, 3,5}, plotting the solution at each site at the final time ¢ = 100.
Over time, the solutions are roughly periodic (clearer when one sees the animated
solutions?) for small F', however, chaos ensues when F' = 5 and above. To examine
the performance of GParareal + fallback in Section 5.4, we will solve system (E.1)

for these three levels of forcing.

100)

it = 100)

ui(t

0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50
Site i Site i Site i

(a) F=1 (b) F =3 (c) F=5

Figure E.1: Numerical solutions to the Lorenz96 system (E.1) with d = 50 sites and
different levels of forcing: (a) F'=1, (b) F' =3, and (c) F' = 5. Solutions are plotted at
t = 100 and were obtained sequentially using the fine solver Far = RK8 with Nz = 10°
time steps.

2Edward Lorenz presented this model at an ECMWTF workshop on predictability in Shinfield
Park, Reading in 1995. The paper was not made public until sometime in 1996 and therefore adopted
the name “Lorenz96”.

3To see animated solutions of the Lorenz96 model over time, visit the public code repository.

150

Bibliography

A. Abdulle and G. Garegnani. Random time step probabilistic methods for uncertainty
quantification in chaotic and geometric numerical integration. Statistics and Computing,
30(4):907-932, 2020. doi:10.1007/s11222-020-09926-w.

W. Agboh, O. Grainger, D. Ruprecht, and M. Dogar. Parareal with a learned coarse
model for robotic manipulation. Computing and Visualization in Science, 23(1):8, 2020.
doi:10.1007/s00791-020-00327-0.

K. Ait-Ameur, Y. Maday, and M. Tajchman. Multi-step Variant of the Parareal Algorithm.
In Domain Decomposition Methods in Science and Engineering XXV, Lecture Notes in
Computational Science and Engineering, pages 393-400. Springer International Publishing,
2020. doi:10.1007/978-3-030-56750-7_45.

K. Ait-Ameur, Y. Maday, and M. Tajchman. Time-Parallel Algorithm for Two Phase
Flows Simulation. In Numerical Simulation in Physics and Engineering: Trends and
Applications: Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School,
SEMA SIMAI Springer Series, pages 169-178. Springer International Publishing, 2021.
doi:10.1007/978-3-030-62543-6_5.

M. A. Alvarez, L. Rosasco, and N. D. Lawrence. Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4:195-266, 2011. doi:10.1561/2200000036.

R. F. Arenstorf. Periodic solutions of the restricted three body problem representing analytic
continuations of keplerian elliptic motions. American Journal of Mathematics, 85(1):27-35,
1963. doi:10.2307/2373181.

M. Arioli, B. Codenotti, and C. Fassino. The padé method for computing the matrix
exponential. Linear Algebra and its Applications, 240:111-130, 1996. doi:10.1016/0024-
3795(94)00190-1.

E. Aubanel. Scheduling of tasks in the parareal algorithm. Parallel Computing, 37(3):172-182,
2011. doi:10.1016/j.parco.2010.10.004.

L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-
dynamics simulations. Physical Review E - Statistical Physics, Plasmas, Fluids, and
Related Interdisciplinary Topics, 66:4—4, 2002. doi:10.1103/PhysRevE.66.057701.

151

https://doi.org/10.1007/s11222-020-09926-w
https://doi.org/10.1007/s00791-020-00327-0
https://doi.org/10.1007/978-3-030-56750-7_45
https://doi.org/10.1007/978-3-030-62543-6_5
https://doi.org/10.1561/2200000036
https://doi.org/10.2307/2373181
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/j.parco.2010.10.004
https://doi.org/10.1103/PhysRevE.66.057701

BIBLIOGRAPHY

G. Bal. On the convergence and the stability of the parareal algorithm to solve partial
differential equations. Lecture Notes in Computational Science and Engineering, 40:
425-432, 2005. doi:10.1007/3-540-26825-1_43.

G. Bal. Parallelization in time of (stochastic) ordinary differential equations, 2006. Pre-print:

www.stat.uchicago.edu/guillaumebal.

G. Bal and Y. Maday. A “Parareal” Time Discretization for Non-Linear PDE’s with
Application to the Pricing of an American Put. In Recent Developments in Domain
Decomposition Methods, pages 189-202. Springer, Berlin, Heidelberg, 2002. doi:10.1007/978-
3-642-56118-4_12.

G. Bal and Q. Wu. Symplectic Parareal. In Lecture Notes in Computational Science and
Engineering, volume 60, pages 401-408. Springer, 2008. doi:10.1007/978-3-540-75199-1_51.

A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula. The parareal in time algorithm applied
to the kinetic neutron diffusion equation. In Domain Decomposition Methods in Science

and Engineering XXI, Lecture Notes in Computational Science and Engineering, pages
437-445. Springer International Publishing, 2014a. doi:10.1007/978-3-319-05789-7_41.

A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, and J. Salomon. Parareal in time 3d
numerical solver for the LWR, benchmark neutron diffusion transient model. Journal of
Computational Physics, 279:67-79, 2014b. doi:10.1016/j.jcp.2014.08.037.

J. Beck and S. Guillas. Sequential Design with Mutual Information for Computer Exper-
iments (MICE): Emulation of a Tsunami Model. STAM/ASA Journal on Uncertainty
Quantification, 4:739-766, 2016. doi:10.1137/140989613.

A. Bellen and M. Zennaro. Parallel algorithms for initial-value problems for difference and
differential equations. Journal of Computational and Applied Mathematics, 25:341-350,
1989. doi:10.1016/0377-0427(89)90037-X.

R. Bhatt, L. Debreu, and A. Vidard. Introducing time parallelisation within data assimilation
using parareal method, 2022. HAL:03540480.

M. Bolten, S. Friedhoff, and J. Hahne. Task graph-based performance analysis of parallel-in-
time methods, 2022. SSRN: 10.2139/ssrn.4201056.

N. Bosch, P. Hennig, and F. Tronarp. Calibrated adaptive probabilistic ODE solvers. In
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics,
pages 3466-3474, 2021. URL http://proceedings.mlr.press/v130/bosch21a/bosch21a.pdf.

S. Brzychcezy and R. R. Poznanski. Mathematical Neuroscience. Academic Press, 2013.

J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons,
Ltd, third edition, 2016.

T. Buvoli and M. L. Minion. Exponential Runge-Kutta parareal for non-diffusive equations,

152

https://doi.org/10.1007/3-540-26825-1_43
https://www.stat.uchicago.edu/~guillaumebal/PAPERS/paralleltime.pdf
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1007/978-3-540-75199-1_51
https://doi.org/10.1007/978-3-319-05789-7_41
https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1137/140989613
https://doi.org/10.1016/0377-0427(89)90037-X
https://hal.inria.fr/hal-03540480
http://proceedings.mlr.press/v130/bosch21a/bosch21a.pdf

BIBLIOGRAPHY

2023. arXiv:2301.03764.

B. Carrel, M. J. Gander, and B. Vandereycken. Low-rank parareal: a low-rank parallel-in-time
integrator, 2022. arXiv:2203.08455.

CCFE. Culham Centre for Fusion Energy, UK Atomic Energy Authority, 2023. URL
https://ccfe.ukaea.uk/.

P. Chartier and B. Philippe. A parallel shooting technique for solving dissipative ODE’s.
Computing, 51:209-236, 1993. doi:10.1007/BF02238534.

O. A. Chkrebtii, D. A. Campbell, B. Calderhead, and M. A. Girolami. Bayesian solution
uncertainty quantification for differential equations. Bayesian Analysis, 11(4):1239-1267,
2016. doi:10.1214/16-BA1017.

A. J. Christlieb, R. D. Haynes, and B. W. Ong. A parallel space-time algorithm. SIAM
Journal on Scientific Computing, 34(5):C233-C248, 2012. doi:10.1137/110843484.

A. Clarke, C. Davies, D. Ruprecht, and S. Tobias. Parallel-in-time integration of kinematic
dynamos. Journal of Computational Physics: X, 7, 2020. doi:10.1016/j.jcpx.2020.100057.

J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. Bayesian probabilistic numerical
methods. SIAM Review, 61(4):756-789, 2019. doi:10.1137/17M1139357.

P. R. Conrad, M. Girolami, S. Sarkk&, A. Stuart, and K. Zygalakis. Statistical analysis of
differential equations: introducing probability measures on numerical solutions. Statistics
and Computing, 27(4):1065-1082, 2017. doi:10.1007/s11222-016-9671-0.

A. Corenflos, N. Chopin, and S. Sarkka. De-sequentialized monte carlo: a parallel-in-time
particle smoother. Journal of Machine Learning Research, 23(283):1-39, 2022. URL
http://jmlr.org/papers/v23/22-0140.html.

J. Cortial and C. Farhat. A time-parallel implicit method for accelerating the solution of
non-linear structural dynamics problems. International Journal for Numerical Methods in
Engineering, 77(4):451-470, 2009. doi:10.1002/nme.2418.

N. Cressie. Spatial Prediction and Kriging. In Statistics for Spatial Data, chapter 3, pages
105-209. John Wiley & Sons, Ltd., 1993. doi:10.1002/9781119115151.ch3.

S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific
machine learning through physics-informed neural networks: Where we are and what’s
next. Journal of Scientific Computing, 92(3):88, 2022. doi:10.1007/s10915-022-01939-z.

X. Dai, C. Le Bris, F. Legoll, and Y. Maday. Symmetric parareal algorithms for Hamiltonian
systems. ESAIM Mathematical Modelling and Numerical Analysis, 47:717-742, 2013.
doi:10.1051/m2an/2012046.

J. Danby. Computer Modeling: From Sports to Spaceflight — From Order to Chaos. Willmann-

153

https://arxiv.org/abs/2301.03764
https://arxiv.org/abs/2203.08455
https://ccfe.ukaea.uk/
https://doi.org/10.1007/BF02238534
https://doi.org/10.1214/16-BA1017
https://doi.org/10.1137/110843484
https://doi.org/10.1016/j.jcpx.2020.100057
https://doi.org/10.1137/17M1139357
https://doi.org/10.1007/s11222-016-9671-0
http://jmlr.org/papers/v23/22-0140.html
https://doi.org/10.1002/nme.2418
https://doi.org/10.1002/9781119115151.ch3
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1051/m2an/2012046

BIBLIOGRAPHY

Bell, 1997.

V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition
Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.
doi:10.1137/1.9781611974065.

B. D. Dudson, M. V. Umansky, X. Q. Xu, P. B. Snyder, and H. R. Wilson. BOUT++: A
framework for parallel plasma fluid simulations. Computer Physics Communications, 180
(9):1467-1480, 2009. doi:10.1016/j.cpc.2009.03.008.

ECMWEF. European Centre for Medium-Range Weather Forecasts, 2023. URL
http://https://www.ecmwi.int/.

W. R. Elwasif, S. S. Foley, D. E. Bernholdt, L. A. Berry, D. Samaddar, D. E. Newman, and
R. Sanchez. A dependency-driven formulation of parareal: Parallel-in-time solution of PDEs
as a many-task application. In MTAGS’11 - Proceedings of the 2011 ACM International
Workshop on Many Task Computing on Grids and Supercomputers, Co-Located with SC’11,
pages 15-24, New York, NY, 2011. ACM Press. doi:10.1145/2132876.2132883.

S. Engblom. Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale
Modelling and Simulation, 8:46-68, 2009. doi:10.1137/080733723.

C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: Theory and
feasibility studies for fluid, structure, and fluid-structure applications. International
Journal for Numerical Methods in Engineering, 58:1397-1434, 2003. doi:10.1002/nme.860.

P. F. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approximation of
the navier-stokes equations. Lecture Notes in Compututational Science and Engineering,
40:433-440, 2005. doi:10.1007/3-540-26825-1_44.

R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1:445-466, 1961. doi:10.1016/S0006-3495(61)86902-6.

B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics
of Computation, 51(184):699-706, 1988. doi:10.1090,/S0025-5718-1988-0935077-0.

M. J. Gander. Analysis of the parareal algorithm applied to hyperbolic problems using
characteristics. Boletin de la Sociedad Espanola de Matemdtica Aplicada, 42:21-35, 2008.

M. J. Gander. 50 Years of Time Parallel Time Integration. In Multiple Shooting and Time
Domain Decomposition Methods, pages 69-113. Springer, 2015. doi:10.1007/978-3-319-
23321-5.3.

M. J. Gander and S. Giittel. Paraexp: A parallel integrator for linear initial-value problems.
SIAM Journal on Scientific Computing, 35(2), 2013. doi:10.1137/110856137.

M. J. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm.

In Lecture Notes in Computational Science and Engineering, volume 60, pages 45-56.

154

https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1016/j.cpc.2009.03.008
http://https://www.ecmwf.int/
https://doi.org/10.1145/2132876.2132883
https://doi.org/10.1137/080733723
https://doi.org/10.1002/nme.860
https://doi.org/10.1007/3-540-26825-1_44
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1090/S0025-5718-1988-0935077-0
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1137/110856137

BIBLIOGRAPHY

Springer, 2008. doi:10.1007,/978-3-540-75199-1 4.

M. J. Gander and E. Hairer. Analysis for parareal algorithms applied to hamiltonian
differential equations. Journal of Computational and Applied Mathematics, 259:2-13, 2014.
doi:10.1016/j.cam.2013.01.011.

M. J. Gander and M. Petcu. Analysis of a krylov subspace enhanced parareal algorithm for
linear problems. ESAIM: Proceedings, 25:114-129, 2008. doi:10.1051/proc:082508.

M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration
method. STAM Journal on Scientific Computing, 29:556-578, 2007. doi:10.1137/05064607X.

M. J. Gander, Y.-L. Jiang, and R.-J. Li. Parareal schwarz waveform relaxation methods.
In Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in
Computational Science and Engineering, pages 451-458. Springer, 2013a. doi:10.1007/978-
3-642-35275-1_53.

M. J. Gander, Y. L. Jiang, B. Song, and H. Zhang. Analysis of two parareal algo-
rithms for time-periodic problems. STAM Journal on Scientific Computing, 35(5), 2013b.
doi:10.1137/130909172.

M. J. Gander, F. Kwok, and J. Salomon. Paraopt: A parareal algorithm for opti-
mality systems. SIAM Journal on Scientific Computing, 42(5):A2773-A28020, 2020.
doi:10.1137/19M1292291.

M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck. A unified analysis framework for
iterative parallel-in-time algorithms, 2022. arXiv:2203.16069.

I. Garrido, M. S. Espedal, and G. E. Fladmark. A convergent algorithm for time parallelization
applied to reservoir simulation. Lecture Notes in Computational Science and Engineering,
40:469-476, 2005. doi:10.1007/3-540-26825-1_48.

I. Garrido, B. Lee, G. E. Fladmark, and M. S. Espedal. Convergent iterative schemes for time-
parallelization. Mathematics of Computation, 75(255):1403-1428, 2006. doi:10.1090/S0025-
5718-06-01832-1.

R. J. Goldston. Introduction to Plasma Physics. CRC Press, first edition, 1995.
doi:10.1201/9780367806958.

S. Gétschel, M. Minion, D. Ruprecht, and R. Speck. Twelve ways to fool the masses when
giving parallel-in-time results, 2021. arXiv:2102.11670.

T. Grafke, T. Schéafer, and E. Vanden-Eijnden. Long term effects of small random perturba-
tions on dynamical systems: Theoretical and computational tools. In Recent Progress and
Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields
Institute Communications, pages 17-55. Springer, New York, NY, 2017. doi:10.1007/978-
1-4939-6969-2.

155

https://doi.org/10.1007/978-3-540-75199-1_4
https://doi.org/10.1016/j.cam.2013.01.011
https://doi.org/10.1051/proc:082508
https://doi.org/10.1137/05064607X
https://doi.org/10.1007/978-3-642-35275-1_53
https://doi.org/10.1007/978-3-642-35275-1_53
https://doi.org/10.1137/130909172
https://doi.org/10.1137/19M1292291
https://arxiv.org/abs/2203.16069
https://doi.org/10.1007/3-540-26825-1_48
https://doi.org/10.1090/S0025-5718-06-01832-1
https://doi.org/10.1090/S0025-5718-06-01832-1
https://doi.org/10.1201/9780367806958
https://arxiv.org/abs/2102.11670
https://doi.org/10.1007/978-1-4939-6969-2
https://doi.org/10.1007/978-1-4939-6969-2

BIBLIOGRAPHY

A. Gration and M. I. Wilkinson. Dynamical modelling of dwarf spheroidal galaxies using
Gaussian-process emulation. Monthly Notices of the Royal Astronomical Society, 485:
4878-4892, 2019. do0i:10.1093/mnras/stz605.

L. Grigori, S. A. Hirstoaga, V.-T. Nguyen, and J. Salomon. Reduced model-based parareal
simulations of oscillatory singularly perturbed ordinary differential equations. Journal of
Computational Physics, 436:110282, 2021. doi:10.1016/j.jcp.2021.110282.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer Series in Computational Mathematics. Springer-Verlag, second edition,
1993. doi:10.1007/978-3-540-78862-1.

T. Haut and B. Wingate. An asymptotic parallel-in-time method for highly oscillatory PDEs.
SIAM Journal on Scientific Computing, 36(2):A693-A713, 2014. doi:10.1137/130914577.

R. D. Haynes and B. W. Ong. MPI-OpenMP algorithms for the parallel space-time solution
of time dependent PDEs. In Domain Decomposition Methods in Science and Engineering
XXI, Lecture Notes in Computational Science and Engineering, pages 179-187. Springer
International Publishing, 2014. doi:10.1007/978-3-319-05789-7_14.

P. Hennig and S. Hauberg. Probabilistic Solutions to Differential Equations and their
Application to Riemannian Statistics. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Ma-
chine Learning Research, pages 347-355, Reykjavik, Iceland, 22-25 Apr 2014. URL
https://proceedings.mlr.press/v33 /hennigl4.html.

P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in
computations. Proceedings of the Royal Society Mathematical, Physical and Engineering
Sciences, 471:20150142, 2015. doi:10.1098 /rspa.2015.0142.

P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation as
Machine Learning. Cambridge University Press, 2022. doi:10.1017/9781316681411.

N. J. Higham. The scaling and squaring method for the matrix exponential revis-
ited. SIAM Journal on Matriz Analysis and Applications, 26(4):1179-1193, 2005.
doi:10.1137/04061101X.

M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical Systems, and
an Introduction to Chaos. Academic Press, third edition, 2013.

A. Q. Ibrahim, S. Gotschel, and D. Ruprecht. Parareal with a physics-informed neural
network as coarse propagator, 2023. arXiv:2303.03848.

M. Tizuka and K. Ono. Influence of the phase accuracy of the coarse solver calculation on
the convergence of the parareal method iteration for hyperbolic PDEs. Computing and
Visualization in Science, 19(3):97-108, 2018. doi:10.1007/s00791-018-0299-9.

156

https://doi.org/10.1093/mnras/stz605
https://doi.org/10.1016/j.jcp.2021.110282
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1137/130914577
https://doi.org/10.1007/978-3-319-05789-7_14
https://proceedings.mlr.press/v33/hennig14.html
https://doi.org/10.1098/rspa.2015.0142
https://doi.org/10.1017/9781316681411
https://doi.org/10.1137/04061101X
https://arxiv.org/abs/2303.03848
https://doi.org/10.1007/s00791-018-0299-9

BIBLIOGRAPHY

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes and

kernel methods: A review on connections and equivalences, 2018. arXiv:1807.02582.

T. Karvonen. Asymptotic bounds for smoothness parameter estimates in Gaussian process
interpolation, 2022. arXiv:2203.05400.

T. Karvonen and C. J. Oates. Maximum likelihood estimation in Gaussian process regression
is ill-posed, 2022. arXiv:2203.09179.

J. Kerin and H. Engler. On the Lorenz ’96 model and some generalizations, 2020.
arXiv:2005.07767.

H. Kersting and P. Hennig. Active uncertainty calibration in Bayesian ODE solvers. In
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
pages 309-318, 2016. doi:10.5555/3020948.3020981.

H. Kersting, T. J. Sullivan, and P. Hennig. Convergence rates of Gaussian ODE filters.
Statistics and Computing, 30(6):1791-1816, 2020. doi:10.1007/s11222-020-09972-4.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992. doi:10.1007/978-3-662-12616-5.

N. Kramer, N. Bosch, J. Schmidt, and P. Hennig. Probabilistic ODE solutions in millions of
dimensions. In Proceedings of the 39" International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 11634-11649, 2022.
https://proceedings.mlr.press/v162/kramer22b /kramer22b.pdf.

W. Kutta. Beitrag zur ndherungsweisen integration totaler differentialgleichungen. Zeitschrift
fur Mathematik und Physik, 46:435-453, 1901.

C.-O. Lee, Y. Lee, and J. Park. Parareal neural networks emulating a parallel-in-time
algorithm. IEEFE Transactions on Neural Networks and Learning Systems, 33(11):6089—
6102, 2022. doi:10.1109/TNNLS.2021.30722009.

R. Lefever and G. Nicolis. Chemical instabilities and sustained oscillations. Journal of
Theoretical Biology, 30:267-284, 1971. doi:10.1016/0022-5193(71)90054-3.

F. Legoll, T. Lelievre, K. Myerscough, and G. Samaey. Parareal computation of stochas-
tic differential equations with time-scale separation: A numerical convergence study.
Compututing and Visualisation in Science, 23:1-18, 2020. doi:10.1007/s00791-020-00329-y.

F. Legoll, T. Lelievre, and U. Sharma. An adaptive parareal algorithm: Application to the
simulation of molecular dynamics trajectories. SIAM Journal on Scientific Computing, 44
(1):B146-B176, 2022. doi:10.1137/21M1412979.

H. C. Lie, A. M. Stuart, and T. J. Sullivan. Strong convergence rates of probabilistic

integrators for ordinary differential equations. Statistics and Computing, 29(6):1265-1283,
2019. doi:10.1007/s11222-019-09898-6.

157

https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/2203.05400
https://arxiv.org/abs/2203.09179
https://arxiv.org/abs/2005.07767
https://doi.org/10.5555/3020948.3020981
https://doi.org/10.1007/s11222-020-09972-4
https://doi.org/10.1007/978-3-662-12616-5
https://proceedings.mlr.press/v162/kramer22b/kramer22b.pdf
https://doi.org/10.1109/TNNLS.2021.3072209
https://doi.org/10.1016/0022-5193(71)90054-3
https://doi.org/10.1007/s00791-020-00329-y
https://doi.org/10.1137/21M1412979
https://doi.org/10.1007/s11222-019-09898-6

BIBLIOGRAPHY

H. C. Lie, M. Stahn, and T. J. Sullivan. Randomised one-step time integration methods for
deterministic operator differential equations. Calcolo, 59(1):13, 2022. doi:10.1007/s10092-
022-00457-6.

J. L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps
<pararéel>. Comptes Rendus de I’Académie des Sciences - Series I - Mathematics, 332
(7):661-668, 2001. doi:10.1016/S0764-4442(00)01793-6.

X. Liu and S. Guillas. Dimension reduction for gaussian process emulation: An application
to the influence of bathymetry on tsunami heights. STAM/ASA Journal on Uncertainty
Quantification, 5(1):787-812, 2017. doi:10.1137/16M1090648.

E. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20:130-141,
1963. doi:10.1175/1520-0469(1963)020;0130:dnf;2.0.co;2.

E. Lorenz. Predictability: a problem partly solved. In Seminar on Predictability, 4-8 Septem-
ber 1995, volume 1, pages 1-18. ECMWF, 1995. URL https://www.ecmwf.int /node/10829.

Y. Maday and O. Mula. An adaptive parareal algorithm. Journal of Computational and
Applied Mathematics, 377:112915-112915, 2020. doi:10.1016/j.cam.2020.112915.

Y. Maday and G. Turinici. A parareal in time procedure for the control of partial differ-
ential equations. Comptes Rendus de I’Académie des Sciences Paris, 335:387-392, 2002.
doi:10.1016/S1631-073X(02)02467-6.

A. Mann. Core Concept: Nascent exascale supercomputers offer promise, present chal-
lenges. Proceedings of the National Academy of Sciences, 117:22623-22625, 2020.
doi:10.1073 /pnas.2015968117.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239-245, 1979. doi:10.2307/1268522.

X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis. PPINN: Parareal physics-informed
neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and
Engineering, 370:113250, 2020. doi:10.1016/j.cma.2020.113250.

G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):1-4,
1965.

K. P. Murphy. Probabilistic Machine Learning: An Introduction. MIT Press, 2022.
K. P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

J. D. Murray. Mathematical Biology: I. An Introduction, volume 17. Springer, 2002.
doi:10.1007/H98868.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve

158

https://doi.org/10.1007/s10092-022-00457-6
https://doi.org/10.1007/s10092-022-00457-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1137/16M1090648
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://www.ecmwf.int/node/10829
https://doi.org/10.1016/j.cam.2020.112915
https://doi.org/10.1016/S1631-073X(02)02467-6
https://doi.org/10.1073/pnas.2015968117
https://doi.org/10.2307/1268522
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1007/b98868

BIBLIOGRAPHY

axon. Proceedings of the IRE, 50:2061-2070, 1962. doi:10.1109/JRPROC.1962.288235.
R. B. Nelsen. An Introduction to Copulas. Springer New York, 2006.

H. Nguyen and R. Tsai. Numerical wave propagation aided by deep learning, 2022.
arXiv:2107.13184.

A. S. Nielsen. Feasibility study of the parareal algorithm, 2012. PhD Thesis, Technical

University of Denmark.

J. Nievergelt. Parallel methods for integrating ordinary differential equations. Communica-
tions of the ACM, 7:731-733, 1964. doi:10.1145/355588.365137.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006. doi:10.1007/978-0-387-40065-5.

C. J. Oates and T. J. Sullivan. A modern retrospective on probabilistic numerics. Statistics
and Computing, 29:1335-1351, 2019. doi:10.1007/s11222-019-09902-z.

A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal Statistical
Society: Series B - Methodology, 40:1-24, 1978. doi:10.1111/j.2517-6161.1978.tb01643.x.

A. O’Hagan. Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering
& System Safety, 91:1290-1300, 2006. doi:10.1016/j.ress.2005.11.025.

B. @ksendal. Stochastic Differential Equations: An Introduction with Applications. Springer
Science & Business Media, 2013.

B. W. Ong and J. B. Schroder. Applications of time parallelization. Computing and
Visualisation in Science, 23, 2020. doi:10.1007/s00791-020-00331-4.

K. Pentland, M. Tamborrino, and T. J. Sullivan. Error bound analysis for the stochastic
parareal algorithm, 2022. arXiv:2211.05496.

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel. Stochastic parareal: An
application of probabilistic methods to time-parallelization. SIAM Journal on Scientific
Computing, 45(3):582-5102, 2023a. doi:10.1137/21M1414231.

K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Appel. GParareal: a
time-parallel ODE solver using Gaussian process emulation. Statistics and Computing, 33
(1):23, 2023b. doi:10.1007/s11222-022-10195-y.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford University Press, 1999.

J. Quinonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian

process regression. Journal of Machine Learning Research, 6(65):1939-1959, 2005.

159

https://doi.org/10.1109/JRPROC.1962.288235
https://arxiv.org/abs/2107.13184
https://doi.org/10.1145/355588.365137
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/s11222-019-09902-z
https://doi.org/10.1111/j.2517-6161.1978.tb01643.x
https://doi.org/10.1016/j.ress.2005.11.025
https://doi.org/10.1007/s00791-020-00331-4
https://arxiv.org/abs/2211.05496
https://doi.org/10.1137/21M1414231
https://doi.org/10.1007/s11222-022-10195-y

BIBLIOGRAPHY

C. E. Rasmussen. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine
Learning: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tibingen,
Germany, August 4 - 16, 2003, Revised Lectures, Lecture Notes in Computer Science,
pages 63-71. Springer, 2004. doi:10.1007/978-3-540-28650-9_4.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 2006.

J. Rosemeier, T. Haut, and B. Wingate. Multi-level parareal algorithm with averaging, 2022.
arXiv:2211.17239.

O. E. Rossler. An equation for continuous chaos. Physics Letters A, 57:397-398, 1976.
doi:10.1016,/0375-9601(76)90101-8.

C. Runge. Ueber die numerische auflésung von differentialgleichungen. Mathematische
Annalen, 46(2):167-178, 1895. doi:10.1007/BF01446807.

K. Rupp. 50 years of microprocessor data, 2022. Raw data accessed on 25/10/2022 from
https://github.com/karlrupp/microprocessor-trend-data.

D. Ruprecht. Convergence of Parareal with spatial coarsening. Proceedings in Applied
Mathematics & Mechanics, 14:1031-1034, 2014. doi:10.1002/pamm.201410490.

D. Ruprecht. Shared memory pipelined parareal. In Furo-Par 2017: Parallel Processing,
Lecture Notes in Computer Science, pages 669-681. Springer International Publishing,
2017. doi:10.1007/978-3-319-64203-1_48.

D. Ruprecht. Wave propagation characteristics of parareal. Computing and Visualization in
Science, 19(1):1-17, 2018. doi:10.1007/s00791-018-0296-z.

D. Ruprecht and R. Krause. Explicit parallel-in-time integration of a linear acoustic-advection
system. Computers & Fluids, 59:72-83, 2012. doi:10.1016/j.compfluid.2012.02.015.

P. Saha, J. Stadel, and S. Tremaine. A Parallel Integration Method for Solar System
Dynamics. The Astronomical Journal, 114:409, 1997. doi:10.1086/118485.

D. Samaddar, D. E. Newman, and R. Sanchez. Parallelization in time of numerical sim-
ulations of fully-developed plasma turbulence using the parareal algorithm. Journal of
Computational Physics, 229:6558-6573, 2010. doi:10.1016/j.jcp.2010.05.012.

D. Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor.
Application of the parareal algorithm to simulations of ELMs in ITER plasma. Computer
Physics Communications, 235:246-257, 2019. doi:10.1016/j.cpc.2018.08.007.

H. Samuel. Time domain parallelization for computational geodynamics. Geochemistry,
Geophysics, Geosystems, 13(1), 2012. doi:10.1029/2011GC003905.

S. Sarkké. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks.

160

https://doi.org/10.1007/978-3-540-28650-9_4
https://arxiv.org/abs/2211.17239
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1007/BF01446807
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1002/pamm.201410490
https://doi.org/10.1007/978-3-319-64203-1_48
https://doi.org/10.1007/s00791-018-0296-z
https://doi.org/10.1016/j.compfluid.2012.02.015
https://doi.org/10.1086/118485
https://doi.org/10.1016/j.jcp.2010.05.012
https://doi.org/10.1016/j.cpc.2018.08.007
https://doi.org/10.1029/2011GC003905

BIBLIOGRAPHY

Cambridge University Press, 2013. do0i:10.1017/CB09781139344203.

S. Sarkkd and A. F. Garcid-Ferndandez. Temporal parallelization of bayesian smoothers. IEEE
Transactions on Automatic Control, 66(1):299-306, 2021. doi:10.1109/TAC.2020.2976316.

F. Schéfer, T. J. Sullivan, and H. Owhadi. Compression, inversion, and approximate PCA of
dense kernel matrices at near-linear computational complexity. Multiscale Modelling and
Simulation, 19(2):688-730, 2021. doi:10.1137/19M129526X.

M. Schober, D. K. Duvenaud, and P. Hennig. Probabilistic ODE solvers with Runge-
Kutta means. Advances in Neural Information Processing Systems, 27, 2014a.
URL https://papers.nips.cc/paper/2014/hash/59b90e1005a220e2ebc542eb9d950b1e-
Abstract.html.

M. Schober, N. Kasenburg, A. Feragen, P. Hennig, and S. Hauberg. Probabilistic shortest path
tractography in DTT using gaussian process ODE solvers. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2014), Lecture Notes in Computer Science, pages
265-272. Springer International Publishing, 2014b. doi:10.1007/978-3-319-10443-0_34.

M. Schober, S. Sarkké, and P. Hennig. A probabilistic model for the numerical solution of
initial value problems. Statistics and Computing, 29:99-122, 2019. doi:10.1007/s11222-
017-9798-7.

H. A. Schwarz. Uber einen grenziibergang durch alternierendes verfahren. Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zirich, pages 272-286, 1870.

J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends
across three eras of machine learning, 2022. arXiv:2202.05924.

J. Shalf. The future of computing beyond Moore’s law. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2166):20190061,
2020. doi:10.1098 /rsta.2019.0061.

J. Skilling. Bayesian solution of ordinary differential equations. In Maximum Entropy and
Bayesian Methods: Seattle, 1991, Fundamental Theories of Physics, pages 23—-37. Springer
Netherlands, 1992. doi:10.1007/978-94-017-2219-3_2.

A. Sklar. Fonctions de Répartition a n Dimensions et Leurs Marges. Publications de L’Institut
de Statistique de L’Université de Paris, 8:229-231, 1959.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances
in Neural Information Processing Systems, volume 18. MIT Press, 2006.

E. Snelson and Z. Ghahramani. Local and global sparse Gaussian process approximations.
In Proceedings of the Eleventh International Conference on Artificial Intelligence and
Statistics, pages 524-531. PMLR, 2007.

B. S. Southworth. Necessary conditions and tight two-level convergence bounds for parareal

161

https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/10.1137/19M129526X
https://papers.nips.cc/paper/2014/hash/59b90e1005a220e2ebc542eb9d950b1e-Abstract.html
https://papers.nips.cc/paper/2014/hash/59b90e1005a220e2ebc542eb9d950b1e-Abstract.html
https://doi.org/10.1007/978-3-319-10443-0_34
https://doi.org/10.1007/s11222-017-9798-7
https://doi.org/10.1007/s11222-017-9798-7
https://arxiv.org/abs/2202.05924
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1007/978-94-017-2219-3_2

BIBLIOGRAPHY

and multigrid reduction in time. SIAM Journal on Matriz Analysis and Applications, 40
(2):564-608, 2019. doi:10.1137/18M1226208.

G. A. Staff and E. M. Rgnquist. Stability of the parareal algorithm. Lecture Notes in
Computational Science and Engineering, 40:449-456, 2005. doi:10.1007/3-540-26825-1_46.

A. M. Stuart and A. L. Teckentrup. Posterior consistency for Gaussian process approximations
of bayesian posterior distributions. Mathematics of Computation, 87(310):721-753, 2018.
d0i:10.1090 /mcom/3244.

TOP500Project. TOP500 supercomputer performance development, 2022. Raw data accessed
on 25/10/2022 from https://www.top500.org/statistics/perfdevel/.

A. Toselli and O. Widlund. Domain Decomposition Methods — Algorithms and Theory.
Springer New York, 2005.

L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000. doi:10.1137/1.9780898719598.

L. N. Trefethen, A. Birkisson, and T. Driscoll. Ezploring ODFEs. Society for Industrial and
Applied Mathematics, Philadelphia, 2017. doi:10.1137/1.9781611975161.

J. M. F. Trindade and J. C. F. Pereira. Parallel-in-time simulation of two-dimensional,
unsteady, incompressible laminar flows. Numerical Heat Transfer, Part B: Fundamentals,

50:25-40, 2006. doi:10.1080,/10407790500459379.

R. Trobec, B. Slivnik, P. Buli¢, and B. Robi¢. Introduction to Parallel Computing: From
Algorithms to Programming on State-of-the-Art Platforms. Undergraduate Topics in
Computer Science. Springer International Publishing, 2018. doi:10.1007/978-3-319-98833-
71.

F. Tronarp, H. Kersting, S. Sérkka, and P. Hennig. Probabilistic solutions to ordinary
differential equations as nonlinear Bayesian filtering: A new perspective. Statistics and
Computing, 29:1297-1315, 2019. doi:10.1007/s11222-019-09900-1.

H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Compu-
tational Mathematics. Cambridge University Press, 2004. doi:10.1017/CB0O9780511617539.

J. Wenger, N. Kramer, M. Pfortner, J. Schmidt, N. Bosch, N. Effenberger, J. Zenn, A. Gessner,
T. Karvonen, F.-X. Briol, M. Mahsereci, and P. Hennig. ProbNum: Probabilistic numerics
in python, 2021. arXiv:2112.02100.

Yale. Yale Centre for Research Computing, 2023. URL https://research.computing.yale.edu/.

G. R. Yalla and B. Engquist. Parallel in time algorithms for multiscale dynamical systems
using interpolation and neural networks. In Proceedings of the High Performance Computing

Symposium, HPC ’18, pages 1-12. Society for Computer Simulation International, 2018.

162

https://doi.org/10.1137/18M1226208
https://doi.org/10.1007/3-540-26825-1_46
https://doi.org/10.1090/mcom/3244
https://www.top500.org/statistics/perfdevel/
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9781611975161
https://doi.org/10.1080/10407790500459379
https://doi.org/10.1007/978-3-319-98833-7_1
https://doi.org/10.1007/978-3-319-98833-7_1
https://doi.org/10.1007/s11222-019-09900-1
https://doi.org/10.1017/CBO9780511617539
https://arxiv.org/abs/2112.02100
https://research.computing.yale.edu/

	List of acronyms
	List of figures
	List of tables
	List of algorithms
	Acknowledgements
	Declarations
	Abstract
	Chapter Introduction
	Parallelism for differential equations
	Why use parallel computing?
	What are parallel-in-time methods?
	Our focus: Parareal

	Probabilistic numerics for differential equations
	What are probabilistic numerical methods?
	Our focus: sampling- and learning-based methods

	Thesis aims and outline

	Chapter The Parareal algorithm
	Overview
	Initial value problem setup
	The objective

	The algorithm
	Derivation
	How it works
	Computational complexity
	Error bound analysis
	Choice of numerical solvers
	Numerical experiment: Arenstorf Orbit

	Variants and related work
	Summary

	Chapter SParareal I: a sampling-based time-parallel algorithm
	Overview
	Motivation and background
	Our approach
	Related work

	The algorithm
	How it works
	Sampling rules
	Computational complexity
	Convergence

	Numerical experiments: nonlinear ODEs
	Scalar nonlinear equation
	The Brusselator system
	The Lorenz63 system

	Discussion and further work

	Chapter SParareal II: error bound analysis
	Overview
	Re-defining SParareal
	The alternative scheme
	Sampling rules

	Error bound analysis
	State-independent perturbations
	State-dependent perturbations (sampling rules)

	Numerical experiments
	System of linear ODEs
	Scalar nonlinear ODE

	Discussion and further work

	Chapter GParareal I: a learning-based time-parallel algorithm
	Overview
	Motivation and background
	Gaussian process emulation
	Our approach
	Related work

	The algorithm
	How it works
	Kernel hyperparameter optimisation
	Computational complexity
	Error bound analysis
	Generalisation to ODE systems

	Numerical experiments: nonlinear ODEs
	FitzHugh–Nagumo model
	Rössler system
	Nonautonomous system
	Double pendulum system

	Improving convergence: GParareal + fallback
	The modification
	Numerical experiments

	Discussion and further work

	Chapter GParareal II: application to PDEs
	Overview
	Some remarks on linear PDEs
	Numerical experiments: nonlinear PDEs
	One-dimensional viscous Burgers' equation
	Two-dimensional FitzHugh–Nagumo model

	Discussion and further work

	Chapter Discussion and outlook
	Contribution toward original aims
	SParareal
	GParareal

	Outlook for probabilistic PinT algorithms

	Appendices
	Rates of convergence
	Proof of superlinear error bound for Parareal
	Additional SParareal experiments
	Scalar Bernoulli equation
	Square limit cycle system

	Technical results for SParareal error bounds
	Standard results
	Generating function method

	The Lorenz96 system
	Bibliography

