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Abstract

This thesis concerns the development of probabilistic time-parallel algorithms for

solving initial value problems (IVPs) that are computationally expensive to simulate

using traditional (serial) time-stepping methods. We begin by considering Parareal,

a well-studied deterministic time-parallel algorithm that combines solutions from

cheap (coarse) and expensive (fine) time-steppers within a predictor-corrector (PC)

scheme, to solve the IVP in parallel. Our goal is to derive, analyse, and test our own

probabilistic time-parallel algorithms that incorporate sampling- and learning-based

techniques from the field of probabilistic numerics into Parareal. These techniques

enable us to exploit valuable information contained within the fine and coarse solution

data generated during a Parareal simulation. We aim to accelerate the convergence

of Parareal (i.e. increase numerical speedup), generate probabilistic solutions to the

IVPs (to quantify numerical uncertainty explicitly), and verify the accuracy of these

solutions both numerically and analytically.

We first propose SParareal, a sampling-based algorithm that provides the PC with

candidate solution values drawn from probability distributions constructed using the

most recent fine and coarse solution data. Increased sampling in SParareal leads to

accelerated convergence vs. Parareal for low-dimensional IVPs, returning stochastic

solutions that are accurate (in the mean-square sense) with respect to the (exact)

serially obtained fine solver solution. Next, we propose GParareal, a learning-based

algorithm that models part of the PC using a Gaussian process emulator, trained on

all previously collected fine and coarse solution data. GParareal achieves accelerated

convergence for low to moderately sized IVPs, attains accurate solutions, and has

the ability to re-use legacy solution data from prior simulations—something that

existing time-parallel methods do not do. After introducing both algorithms, we

investigate their performance and analyse their limitations, assessing whether or not

they are viable methods for solving large-scale IVPs in parallel and discussing what

can be done to improve them in their current form.
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“For the scientist, at exactly the moment of discovery—that most

unstable existential moment—the external world, nature itself, deeply

confirms his [or her] innermost fantastic convictions. Anchored abruptly

in the world, Leviathan gasping on his hook, he is saved from extreme

mental disorder by the most profound affirmation of the real.”

Richard Rhodes, The Making of the Atomic Bomb
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Chapter 1

Introduction

This thesis concerns the development of probabilistic time-parallel algorithms for

solving initial value problems (IVPs). The principle aim is to investigate whether we

can embed techniques from the field of probabilistic numerics (PN) into the framework

of existing parallel-in-time (PinT) algorithms. The key idea is to more effectively

utilise the IVP solution data obtained throughout a parallel-in-time simulation to

reduce simulation runtimes and (perhaps) better quantify solution uncertainty.

In this chapter, we give a general introduction to both PinT algorithms and PN

methods, providing an overview of how they work and have developed, and motivate

why research in these areas is important in the context of solving IVPs. We will

describe which PN methods we plan to incorporate into the framework of a popular

PinT algorithm, provide a detailed summary of our principal research aims, and

outline the rest of this thesis.

1.1 Parallelism for differential equations

1.1.1 Why use parallel computing?

In its most basic form, parallel computing is the process by which a computationally

expensive task is partitioned into a number of cheaper sub-tasks that can be solved

simultaneously without prior knowledge of one another (Trobec et al., 2018). By

computationally expensive, we mean that the task takes a long time to solve, e.g.

minutes, hours, or days. The goal is to reduce the total time taken to solve this

expensive task, which is run on a single compute core, by re-distributing the com-

putational load over a number of cores that can run in parallel at the same time.

For example, consider the time-consuming task of trying to invert a number of very

large matrices using a single core—clearly this task will be completed much faster by

assigning different matrices to their own cores.

A modern laptop computer typically contains a single processor, e.g. a central

processing unit, made up of between 4 − 20 compute cores (hence why they are

1



Chapter 1. Introduction

Figure 1.1: A hierarchy of computing terminology. A high performance computer
(HPC) cluster is a collection of compute nodes (sometimes referred to as servers) linked
together by fast interconnects. These nodes typically contain a few processors, each
made up of a number of compute cores that carry out computations. Each of these
cores are, in turn, made up of billions of transistors.

often referred to as a multi-core processors). These cores carry out computations

on our behalf via a complex network of billions of transistors—see Figure 1.1 for a

hierarchy of computing terminology. In Figure 1.2(a), we can see that (historically)

the number of transistors that fit onto a core doubled approximately every two years

(in line with Moore’s law (Moore, 1965)). However, processors clock speeds (i.e. the

typical frequency at which computations are carried out) have plateaued over the

past twenty years or so. This is because faster (serial) computations require more

power, generating heat that can damage the core if not properly cooled (which would

require even more power). Focus has therefore turned to parallel computing where

multi-core processors, with more balanced clock speeds and power consumption, can

be used to carry out multiple serial computations in parallel. Parallel computing

is becoming increasingly necessary in a number of disciplines to reduce excessive

simulation runtimes and overcome the aforementioned physical limitations arising on

machine hardware. These trends, as well as Moore’s law coming to an end (Shalf,

2020), are driving the need to develop new algorithms, or convert existing serial ones,

that can exploit parallel computing architectures.

High performance computers (HPCs), perhaps more commonly known as super-

computers or computing clusters, are the typical platform for deploying large-scale

parallel algorithms and contain a number of compute nodes, each made up of hun-

dreds, if not thousands, of interlinked compute cores. The performance of the fastest

HPCs in the world, typically measured by the number of floating point operations

per second (FLOPS) taken to solve a very large dense linear system (i.e. Ax = b), is

increasing year on year—see Figure 1.2(b). For reference, a typical modern laptop

can carry out O(1012) FLOPS while the fastest HPC in the world1 contains over

8 million cores and can carry out O(1018) FLOPS. HPCs are currently used to

simulate solutions to some of the world’s most computationally demanding problems

in numerical weather prediction (ECMWF, 2023), genome sequencing (Yale, 2023),

machine learning (Sevilla et al., 2022), and plasma physics (Dudson et al., 2009).

Numerical simulations, often referred to as the third pillar of science (alongside theory

and experimentation), aid the study of physical phenomena that are analytically or

1As of 2023, the fastest HPC in the world was Frontier. Hosted at the Oak Ridge Leadership
Computing facility in Tennessee, United States, it was the first HPC to breach the exascale barrier—
more details available at https://www.olcf.ornl.gov/frontier/.
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1.1. Parallelism for differential equations

(a) (b)

Figure 1.2: (a) The history of computer processor properties. Shown are the
number of transistors that can fit onto a compute core (black circles), typical clock
speeds/frequencies of a processor (purple diamonds), typical power consumption of a
processor (blue triangles), and the number of cores that fit onto a given processor (red
squares). (b) The performance of the fastest high performance computer each year since
1993, measured in terms of floating-point operations per second (FLOPS). Data sources:
(a) Rupp (2022) and (b) TOP500Project (2022).

experimentally intractable. These problems can take a very long time to simulate (on

the order of hours, days, and weeks), even being computationally infeasible in some

cases, and so there is a demand for algorithms that can exploit the maximum possible

degree of parallelism to reduce simulation runtimes. At present, HPCs with increasing

numbers of compute cores are being built to tackle these gargantuan tasks, however,

we have yet to fully develop the necessary parallel algorithms that can exploit such

architectures. The development of faster and easier-to-use parallel algorithms is

becoming increasingly important2 and so a particular focus of this thesis will be

on improving existing parallel algorithms for solving differential equations. Note

that throughout this thesis, we will slightly abuse terminology by instead referring

to “compute cores” as “processors”—a common switch made throughout parallel

computing literature.

1.1.2 What are parallel-in-time methods?

The bedrock of many complex models in science involve solving systems of ordinary,

partial, or stochastic differential equations (ODEs, PDEs, or SDEs) using numerical

methods (Danby, 1997; Kloeden and Platen, 1992; Trefethen et al., 2017). Of

particular interest to us are IVPs, which model the evolution of some quantity of

interest over time (as well as space for PDEs) from a single initial condition or initial

state under the action of a differential equation. To solve an IVP numerically, one

2The ExCALIBUR research programme is aiming to deliver the next generation of HPC software
in areas such as particle hydrodynamics, materials simulation, and plasma turbulence in fusion
modelling. Further use cases can be found at https://excalibur.ac.uk/.
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typically uses a time-stepping scheme (more on these in Chapter 2), in which the

solution state of the IVP at a given time step is used to approximate the solution at

the next time step—an inherently sequential process that is carried out on a single

processor. The computational time taken to solve an IVP depends on a myriad of

factors including, but not limited to, its type (linear/nonlinear/stiff/non-stiff), size

(number of equations), the accuracy of the time-stepping method, the length of the

interval of integration, and the number of discrete time steps taken (in addition to a

discrete spatial mesh, if present). We are interested in problems where the interval

of integration and/or the number of time steps required to solve the problem is large,

leading to lengthy simulation runtimes.

For IVPs that have a spatial component (typically spatio-temporal PDEs), bound-

ary conditions are prescribed on the spatial domain and so one can solve the problem

in space either serially or in parallel, using well established domain decomposition

methods (Quarteroni and Valli, 1999; Toselli and Widlund, 2005). Domain decompo-

sition methods partition the spatial domain into smaller subdomains, solving on each

subdomain in parallel using its own processor (with the aid of boundary conditions3),

and then combine the calculated solutions at the subdomain interfaces (which can

overlap) in an iterative manner—see Dolean et al. (2015) for further details. Although

very efficient for high dimensional systems, yielding high parallel speedup, spatial

parallelism eventually begins to saturate, i.e. using additional processors does not

result in increasing speedup due to excessive overhead serial communication costs

between the processors. The total numerical speedup gained from the spatial paral-

lelism will then bottleneck in the temporal domain, limited by the serial nature of the

time-stepping scheme in use. For example, modern algorithms used to simulate Edge

Localised Modes in turbulent fusion plasmas can take anywhere between 100-200

days to integrate over a time interval of just one second (Samaddar et al., 2019).

Sequential bottlenecks in time have motivated the research and development

of PinT methods, providing ways to integrate IVPs over long time intervals where

solutions would be unobtainable (in realistic time-frames) using sequential time-

stepping schemes. One way to integrate in a non-sequential manner, similar to

spatial parallelisation, is to discretise the time interval of an IVP into N “slices”

upon which N smaller IVPs are solved in parallel using existing sequential time-

stepping schemes. The principle of causality, however, poses a fundamental problem.

When solving IVPs, solution states at later times are determined by solution states

at earlier times, starting from some prescribed initial condition at the beginning

of the interval of integration. Therefore, prior to the parallel integration of the N

smaller IVPs, we require N initial values from which to begin integration in each

time slice, of which N − 1 are unknown a priori—see Figure 1.3. This contrasts

3Boundary conditions are typically constraints on the value (e.g. Dirichlet conditions) and/or
the derivatives (e.g. Neumann conditions) of the solution at the boundaries of the spatial domain.
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1.1. Parallelism for differential equations

Figure 1.3: Exact solution u(t) to a scalar ODE at discrete times t0, . . . , t5 (black
dots), typically obtained using a serial time-stepping scheme on one processor. To
calculate the solution in parallel, each time slice [tn−1, tn] is assigned its own processor
Pn and each smaller IVP is solved—the issue being that N − 1 of the N initial values
from which to begin integration are unknown a priori to simulation.

with spatially-parallel methods which can take advantage of the fact that there are

typically at least two boundary conditions prescribed in space, e.g. left and right

boundaries in one-dimensional. Using domain decomposition methods, the solution

can be calculated from the left and right boundary conditions simultaneously and

iteratively matched across some overlapping or non-overlapping interface in the

middle. This not so subtle difference makes the time-parallelisation problem much

less intuitive to solve and suggests why domain decomposition methods have a rich

history dating back to Schwarz (1870) while PinT methods have only been studied

for the past 60 years.

The first PinT algorithm was proposed by Nievergelt (1964), the idea being

that one could locate approximate initial conditions for the N − 1 smaller IVPs by

solving the entire IVP using a cheap (coarse) time-stepping scheme. The N IVPs

are then solved in parallel using the original (more expensive) time-stepping method

and the resulting trajectories are matched across time slice boundaries using an

interpolation scheme—a more detailed account of his algorithm will be given in

Chapter 3. This seminal contribution spawned an entirely new field of work, where

there has been extensive work on a number of different PinT methods4 which were

categorised by Gander (2015) into four (not necessarily distinct) groups, namely:

multiple shooting, multigrid, waveform relaxation, and direct methods. Our focus

will be on multiple shooting algorithms for ODEs (e.g. Nievergelt’s method), where

one partitions the time domain into a set of slices and attempts to solve in each

one in parallel, enforcing continuity conditions at the slice boundaries—a number

of which have been successfully developed and tested (Bellen and Zennaro, 1989;

Chartier and Philippe, 1993; Lions et al., 2001; Saha et al., 1997). Within the other

4A collection of resources on PinT methods including code repositories, publications, workshops,
and other materials can be found at http://parallel-in-time.org/.
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categories, PinT methods have been designed to solve IVPs with a hierarchy of coarser

time/space grids (multigrid), domain decomposition methods (waveform-relaxation),

and with modified existing sequential time-stepping schemes (direct methods). For

an overview of these methods and other state-of-the-art in PinT algorithms, refer

to Ong and Schroder (2020). Being able to solve computationally intractable (with

sequential methods) IVPs that evolve on different timescales over very long time

intervals whilst possibly exhibiting metastability and chaotic behaviour are challenges

that modern PinT methods need to be able to handle. Promisingly, a number of

PinT methods have already been demonstrated to work with spatial parallelisation

techniques (Christlieb et al., 2012; Gander et al., 2013a; Haynes and Ong, 2014;

Samuel, 2012). With the advent of exascale HPCs on the horizon (Mann, 2020),

increased attention is being paid to develop large-scale PinT methods5 and we too

will focus our efforts on furthering this goal.

1.1.3 Our focus: Parareal

In this thesis, we focus on a particular PinT method known as the Parareal algorithm,

an easy-to-use multiple shooting method first proposed by Lions et al. (2001).

Since its inception, Parareal has become increasingly popular due to its relatively

straightforward implementation and demonstrable effectiveness in providing IVP

speedup for a range of problems spanning molecular (Baffico et al., 2002; Engblom,

2009; Legoll et al., 2020, 2022) and fluid dynamics (Fischer et al., 2005; Garrido

et al., 2005; Trindade and Pereira, 2006), to geophysical processes (Clarke et al.,

2020; Samuel, 2012) and nuclear physics (Baudron et al., 2014a,b; Grigori et al.,

2021; Samaddar et al., 2010). Based on ideas from Nievergelt (1964) and Chartier

and Philippe (1993), Parareal partitions the time domain into N slices, assigning a

processor to each one, and solves the smaller IVPs in parallel using a computationally

expensive, high accuracy, serial time-stepping method referred to as the fine solver—

recall Figure 1.3. To locate the N − 1 unknown initial values from which to begin

integration and therefore avoid the pitfall created by the causality principle, Parareal

uses a second serial time-stepping method (referred to as the coarse solver) that is

computationally cheaper and of lower numerical accuracy compared to the fine solver.

The algorithm iteratively locates a solution to the IVP by combining the coarse and

fine solutions using a predictor-corrector (PC) scheme, derived by discretising the

Newton-Raphson method—a more detailed derivation and exposition of Parareal is

given in Chapter 2. The algorithm stops after k 6 N iterations, once a pre-specified

tolerance is met.

The defining metric of performance when using Parareal is the number of iterations

5The TIME-X project is one particular example of an initiative that aims to showcase parallel-in-
time methods that have been developed in academic settings on massively parallel HPC architectures,
see https://www.time-x.eu/.
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k taken until the algorithm stops. The aim being to calculate a solution to the

IVP that has numerical accuracy of the order of the high accuracy fine solver faster

than the fully serial computation. In terms of runtime, each iteration of Parareal is

approximately equal to a single (computationally expensive) run of the fine solver

over a time slice, and so the smaller k is, the higher the parallel speedup realised

by Parareal. Speedup is calculated by taking the ratio of the time taken for the

fine solver to run sequentially over all time slices and the time taken for Parareal

to run—roughly approximated by the ratio N/k. Therefore, if we can reduce the

number of iterations by even just a few, we can dramatically reduce Parareal runtimes

and increase parallel speedup.

When Parareal uses a low accuracy coarse solver, it typically requires more

iterations to converge and so there is an increasing demand for fast, but numerically

accurate, coarse solvers for particular IVPs—we will revisit the importance of having

a cheap coarse solver in Chapter 2. Whilst certainly a worthwhile goal, our aim is not

to develop faster and more accurate coarse solvers but to instead try to make better

use of the simulation data already available in Parareal, specifically the solution

data generated by the coarse and fine solvers. The primary aim of this thesis is to

investigate whether ideas from PN (next section) can make more efficient use of the

Parareal simulation data to guide Parareal to the N − 1 unknown solution states

in fewer iterations than is currently possible. In addition, the hope is that the PN

methods may also be useful in returning a measure of uncertainty over the Parareal

solution, something that does not happen in Parareal and is typically calculated

a posteriori. We chose to work with Parareal (rather than another PinT method)

because the two solvers return distinct datasets that we can manipulate with our

probabilistic techniques whereas other PinT methods do not seem to generate such

datasets. In the next section, we describe what PN methods are, how they are

used to solve differential equations, and how we can exploit them within the PinT

framework.

1.2 Probabilistic numerics for differential equations

1.2.1 What are probabilistic numerical methods?

The purpose of many (classical) numerical algorithms is to locate approximate

solutions to problems that typically have no closed-form solution. Consider for

example, the sequential time-stepping methods mentioned in the previous section,

which are designed to approximate the solution to an IVP on a discretised set of

points in time (Hairer et al., 1993). Most time-stepping methods are derived in such

a way that the error, with respect to the unknown exact solution at each time step, is

bounded by a scalar multiple of the time step size to some power (i.e. the local/global

truncation error). In practice, one can often choose a very small time step, solve the

7
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IVP and be done, postponing any error estimation indefinitely (often assuming the

error is negligible). This assumption has traditionally taken root among practitioners,

however, if there exists a computational budget constraining how small the step

sizes can be, it may not be feasible. In general, errors bounds from time-stepping

schemes are assumed to be ‘uniform’, i.e. the probability that the exact solution

lies within the bound is equally likely for any value in the bound. Therefore, if the

IVP solution is to be used to initialise a future (non-probabilistic) computation, e.g.

initial conditions for a different IVP, then the user needs to make a choice about

which solution (within the scalar bound) to use—whose error may not have been

accounted for, and therefore amplified, in the second computation.

PN provides a way to quantify and structure the uncertainty arising from nu-

merical computations by formulating the problem under consideration within the

framework of statistical (often, Bayesian) inference (Hennig et al., 2022). Initially,

the unknown solution to the problem (e.g. the IVP) that we wish to infer, sometimes

referred to as the latent quantity, is assigned a prior probability distribution. This

distribution expresses a belief about the latent quantity and is often informed by

any a priori knowledge about its structure or behaviour. “Data” arising from the

calculations within a simulation, e.g. the vector field evaluations for an IVP, are

treated as observations and are related to the latent quantity by a likelihood func-

tion. This likelihood prescribes a measure of uncertainty (with respect to the latent

quantity) over the observations. The prior and likelihood can then be combined

using Bayes’ theorem, which may require complex (possibly analytically intractable)

calculations, to compute a posterior distribution over the latent quantity, i.e. a

probability distribution over the solution to the problem.

PN methods have many advantages over classical numerical methods. They return

a (posterior) probability distribution over the solution, rather than the point-wise

estimates (on a mesh) given by classical methods, providing an approximation of

the solution (i.e. the “location” of the posterior) and its associated numerical error

(i.e. the “width” of the posterior) if correctly calibrated6. The posterior provides a

much richer description of the numerical uncertainty over the solution and samples

can be drawn that each represent a realistic estimate of the true solution7. In fact,

many classical numerical methods can be recovered as mean or maximum a posteriori

estimates of the corresponding PN method. For example, the posterior mean of the

PN ODE solvers proposed in Schober et al. (2014a) coincide exactly with solutions

6Calibration of the numerical uncertainty refers to the “width”, i.e. the variance/support, of the
posterior distribution and it is important to question “...whether the posterior can indeed be endowed
with an interpretation as a notion of uncertainty, connected to the probable error of the numerical
method” (Hennig et al., 2022, Pg. 12). In other words, can we trust whether the uncertainty
returned by the posterior distribution is a true representation of the error in the numerical method?
Much work is ongoing to show that this is the case (Bosch et al., 2021).

7For IVPs, many PN methods can actually infer the solution at time steps that are not on
the original mesh, something that classical methods cannot do without some form of interpolation
scheme (Bosch et al., 2021; Krämer et al., 2022; Schober et al., 2019).
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obtained by low-order Runge-Kutta methods. Two additional benefits of PN methods,

not possible with classic methods, are that known information about the solution

can be encoded into the prior before simulation and that PN methods can handle

probability distributions as both inputs (priors) and outputs (posteriors), affording

them the ability to propagate uncertainty throughout a sequence of computational

tasks.

This is not to say PN methods have no drawbacks. As mentioned before, appro-

priate priors and likelihoods must be specified in order to yield calibrated posterior

uncertainty estimates—a challenging task if unfamiliar with the problem at hand. In

addition, calculating a posterior distribution is usually more costly than calculating

a point-wise estimate of the solution. However, the benefits of having the calibrated

uncertainty estimates mentioned above can be worth the additional cost if the to-

tal computational budget for a task is limited—some PN methods for differential

equations are now reaching competitive cost in line with classical methods. We will

revisit some of these points in the next section.

1.2.2 Our focus: sampling- and learning-based methods

PN methods play an an important role in solving numerical problems and quantifying

epistemic uncertainty, i.e. the uncertainty due to a lack of information, in a number

of different application areas and have deep-seeded roots in history (Hennig et al.,

2015; Oates and Sullivan, 2019). With the aforementioned advances in computing

technology over the last half century, there has been renewed interest in PN8, with

work being undertaken to strengthen its mathematical foundations (Cockayne et al.,

2019) and showcase its capabilities in many different areas of classical numerical com-

putation, including quadrature, linear algebra, optimisation, and most importantly

for us, differential equations—a breakdown of these methods can be found in Hennig

et al. (2022). There are two main approaches to solving IVPs using PN methods

which we will refer to as sampling- and learning-based methods.

Sampling-based methods solve IVPs by using random perturbations within

classical (deterministic) one-step numerical integrators, e.g. forward/backward Euler

schemes. One of the first such methods was proposed by Conrad et al. (2017), in which

they perturbed solutions (at each time step) from a deterministic integrator using

a sample from an appropriately scaled Gaussian distribution. These samples were

assumed to represent the numerical error generated by the deterministic integrator

and so convergence results were derived showing that stochastic numerical solutions

were of the same accuracy as those obtained deterministically—see Figure 1.4(a)

for an illustration comparing the deterministic and stochastic solutions. Therefore,

8There exists a strong community dedicated to PN research with extensive work going into
developing ProbNum (https://probnum.readthedocs.io/en/latest/), a Python package for carrying
out PN computations.
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(a) Sampling-based (b) Learning-based

Figure 1.4: Illustrative solutions to a scalar ODE, located using PN solvers (on
one processor). (a) Deterministic time-stepping scheme solution (black) vs. stochastic
solutions (blue) generated by a sampling-based solver that perturbs solutions from a
deterministic time-stepping scheme. Simulating sufficiently many independent stochastic
solutions using the the sampling-based solver forms a distribution over the solution to
the ODE. (b) Posterior distribution over the ODE solution generated by a learning-based
solver. The distribution is depicted by its mean (black) and two standard deviations
either side of it (light purple regions).

by solving the ODE multiple times (in an embarrassingly parallel manner) one can

obtain a (non-Gaussian) distribution of solutions that represent all9 possible ODE

trajectories obtainable with the deterministic integrator—useful for solutions which

exhibit chaotic behaviour or exist near invariant manifolds in phase space. In follow

up work, Lie et al. (2019, 2022) derived stronger convergence results, allowing for

more general (non-Gaussian) perturbations, and in Abdulle and Garegnani (2020)

the authors instead perturb the time step to preserve geometric features of the

deterministic integrator.

On the other hand, learning-based methods formulate the IVP from a Bayesian

point of view. Work on these methods began with Skilling (1992), where he devel-

oped the first “ODE filter”, a solver that uses Gaussian process (GP) regression

(O’Hagan, 1978; Rasmussen, 2004) to calculate direct probabilistic solutions to the

IVP. GP regression models are statistical models that can infer the value of an

unknown (expensive-to-simulate) function using multivariate Gaussian distributions

and a finite number of evaluations of the function—an explanation of GPs will be

given in Chapter 5. ODE filters solve sequentially in time, conditioning the GP

prior distribution on solution and derivative evaluations (observations), to obtain a

posterior over the ODE solution (Hennig and Hauberg, 2014; Schober et al., 2014a,b).

Figure 1.4(b) illustrates what a posterior distribution over the solution to an ODE

9In reality, not all possible trajectories can be realised as this would take an infinite number of
independent simulations. A well-approximated distribution of trajectories can be obtained with a
reasonable number of independent simulations.
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looks like. The inefficiency of standard GP regression methods lead to the devel-

opment of more advanced ODE filters that instead use Gauss-Markov processes

(Øksendal, 2013) and can harness the computational speed of Kalman filters (Särkkä,

2013) to calculate the posterior distribution using observations sequentially. Instead

of calculating a numerical solution on the mesh, as classical integration methods

do, these ODE filters can also return a probability measure over the solution at

times off the mesh (Bosch et al., 2021; Schober et al., 2019; Tronarp et al., 2019;

Wenger et al., 2021) and are becoming computationally competitive with respect

to classical solvers (Kersting et al., 2020; Krämer et al., 2022). At any point in

time, one can take a ‘slice’ (vertically) and obtain a distribution over the solution

to the ODE. This direct method of calculating a posterior distribution differs from

the sampling-based approach in which the ODE has to be solved numerous times

to obtain a distribution. Sampling- and learning-based methods, however, are not

necessarily mutually exclusive—PN ODE solvers have been developed that use ideas

from both (Chkrebtii et al., 2016; Tronarp et al., 2019).

As previously hinted at, the reason we discuss these two approaches is that

Parareal generates a lot of simulation data, i.e. fine and coarse solution information,

most of which (after being used once) is “forgotten” by Parareal in a Markovian-

like manner. By this, we mean that Parareal uses the solution data only once in

the PC update (the coarse data is used twice) before generating new simulation

data for the next update. We wish to take advantage of the valuable information

that this data gives us about how the fine and coarse solvers propagate a solution

state from one time step to the next. Using the sampling-based approach, we will

use the simulation data to construct probability distributions to model where we

believe the true N − 1 unknown initial values are. From these distributions we can

sample candidate solutions and explore the solution space much more freely than is

possible with just Parareal and try to reduce the number of iterations taken until

convergence—this work will form the bulk of Chapters 3 and 4. With regard to the

learning-based approach, we plan to use the simulation data as observations in a

GP emulator10 to try to infer solution states from the solvers without having to run

them (at expensive cost). In effect we will attempt to “learn” how the solvers behave

and then try to infer the N − 1 solution states faster than Parareal can—this work

will be presented in Chapters 5 and 6. In the next section, we will explicitly state

our aims, describe how we plan to achieve them by combining PinT methods with

some of the PN techniques discussed, and outline the remainder of the thesis.

10GP emulators work in the same way as GP regression models except that the observations are
typically outputs of computer-based simulations (in our case, the fine and coarse solvers) and have
zero observation error, i.e. they are “noise-free”.
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Chapter 1. Introduction

1.3 Thesis aims and outline

Until now, PinT methods have been derived from the classical numerical analysis

viewpoint, yielding deterministic solutions and fixed rates of speedup when solving

a given IVP. This works well in many situations, however, when speedup for a

particular type of IVP is limited, these methods do not make full use of the solution

data they generate to reduce runtimes—something mentioned in Maday and Mula

(2020) in the context of domain decomposition and high-order time-stepping but yet

to be investigated in much detail. In a similar vein, PN methods have been designed

to solve IVPs in a purely sequential manner, suffering the same computational

intractability issues as sequential time-stepping methods when solving IVPs with

long time intervals—it has been hinted that parallelising these methods is a next

natural next step in their development (Kersting and Hennig, 2016).

We wish to fuse these ideas together to accelerate the convergence of Parareal

by making more efficient use of the fine and coarse solution information generated

throughout a simulation. The PN framework for solving IVPs is built in a way that

naturally allows us to use the simulation data from Parareal and perhaps even re-use

it in future simulations—something that existing PinT methods do not do. The

long-term goal is to develop a fully probabilistic PinT method that can solve an

IVP in parallel and return a posterior distribution with a meaningful measure of

uncertainty over the IVP solution.

In this thesis, we aim to:

I. derive, analyse, and test the first probabilistic PinT algorithms by incorporating

some of the sampling- and learning-based techniques from PN into the Parareal

algorithm.

II. demonstrate that our algorithms yield additional numerical speedup vs. the

standard Parareal algorithm when solving nonlinear IVPs on HPC facilities.

III. show that solutions obtained from our algorithms are accurate by verifying

convergence both numerically and analytically.

IV. if possible, generate probabilistic solutions to the IVPs (like the aforementioned

PN methods do).

V. assess the long-term viability of our algorithms to determine whether they can

in fact provide numerical speedup for large-scale IVPs.

How we achieve these aims and structure the remainder of the thesis is as follows.

In Chapter 2, we begin by setting up the IVP, a time-dependent system of

(potentially nonlinear) ODEs that are computationally intractable to solve over a

long time interval using serial methods. We then discuss what kind of ODE systems

12



1.3. Thesis aims and outline

fall under this category and which serial time-stepping methods are available to us.

Following this, we derive the Parareal algorithm from first principles using the work

of Gander and Vandewalle (2007). We explain how it works in practice (along with a

numerical experiment), analyse its computational complexity, review recent work on

error bound analysis, and explore possible options for choosing the fine and coarse

solvers. Furthermore, we describe a number of Parareal variants that have emerged

over the years, discussing which issues (with respect to the classic Parareal scheme)

they attempt to remedy and how these approaches vastly differ from what we are

trying to do.

In Chapter 3, we present our first algorithm, a sampling-based PinT method

we refer to as Stochastic Parareal or SParareal for short (Pentland et al., 2023a).

Instead of integrating forward in time from a single value (in each time slice) given

by Parareal’s PC, we use a pre-specified probability distribution to sample and

propagate a number of candidate initial values forward in time in parallel. The

idea is that, using distributions constructed from known coarse and fine solution

information, this stochastically generated set of initial values explores the solution

space more efficiently and provides a better guess to the solution (the N −1 unknown

initial values) than those found purely deterministically, accelerating convergence

compared to the classic Parareal algorithm. We begin by examining the sampling-

based PN techniques we propose to use and provide some background for how we

came up with the scheme itself. As with Parareal, we then detail how SParareal works

(now generating stochastic, not deterministic, solutions), analyse its computational

complexity, and present numerical experiments. We demonstrate that, for low-

dimensional ODE systems, SParareal converges in fewer iterations than Parareal

when the number of samples is large enough and can return a measure of uncertainty

over the solution upon multiple simulations of the algorithm.

All numerical experiments in this thesis are conducted in MATLAB with parallel

simulations run on HPC facilities at the University of Warwick. In particular, we

make use of the HPC system known as Avon11, allowing us to run experiments on

up to a maximum of 512 compute cores (using more cores with MATLAB was not

possible due to software limitations). In the past few decades, simulation methods

have moved to the forefront of scientific research and increasing pressure is being

placed on researchers to uphold standards on computational reproducibility. In light

of this (and to enable further scrutiny of our work), all code written to generate

the computational results in this thesis is available in a public repository12. This

should allow interested readers to reproduce the numerical experiments and, where

11Avon is made up of 180 Dell PowerEdge C6420 compute nodes each equipped with two Intel Xeon
Platinum 8268 (Cascade Lake) 2.9 GHz 24-core processors (i.e. 48 cores ×180 nodes = 8640 total) each
with 192 GB DDR4-2933 RAM. For more information, visit https://warwick.ac.uk/research/rtp/sc/.

12Please visit https://tinyurl.com/KP-PhD-Thesis. If there are any issues accessing this repository,
please do get in contact.
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Chapter 1. Introduction

simulations may take some time to run on HPC facilities, regenerate the same results

using stored data files.

In Chapter 4, we derive rigorous error bounds for SParareal, demonstrating that

the stochastic solutions converge in the mean-square sense (Pentland et al., 2022).

In particular, we derive both superlinear and linear mean-square errors bounds when

using SParareal with different types of random perturbation, e.g. perturbations

that may or may not depend on the current state of the system at which they are

generated. In order to do this, we formulate SParareal in a slightly different way to

the version presented in Chapter 3, however, the analysis is still valid in the case

where we take single random sample at each time slice (this will become clear later

on). We perform a number of numerical experiments, validating our theoretical

results by showing they align with the numerical errors generated by simulations of

SParareal.

In Chapter 5, we approach the PinT problem from a more Bayesian (rather than

frequentist) perspective, addressing some of the issues associated with SParareal. We

present our second algorithm, a learning-based PinT method we refer to as GParareal

(Pentland et al., 2023b). To find the N − 1 unknown initial values in fewer iterations,

we model the correction term in Parareal’s PC with a GP emulator, trained on

all coarse and fine solution information obtained throughout the simulation (the

amount of which increases with each iteration). The idea is to locate more accurate

corrections and avoid throwing away valuable solution data. As before, we provide an

overview of how the scheme was conceptualised and discuss some of the background

material associated with how other learning-based methods have been used in PN

and Parareal. We then derive GParareal, analyse computational complexity, provide

an error bound on the solution at a fixed iteration (that depends on how well

the emulator is trained), and carry out extensive numerical experiments to show

that GParareal can converge faster than Parareal for a number of low-dimensional

nonlinear ODE systems. In addition, we demonstrate how GParareal can re-use

simulation data from a previous simulation (legacy data) of the same IVP, whether

it be from solving from a different initial condition or over a different time interval,

to converge in even fewer iterations than Parareal. We also show that GParareal can

converge for IVPs that Parareal cannot, i.e. when the coarse solver is too coarse for

standard Parareal to converge. We note in the complexity analysis and corresponding

numerical experiments that training the GP emulator comes at an additional cost

compared to Parareal and explore options to work around this.

In Chapter 6, we push GParareal to its limits by investigating how it performs

when used to solve the one-dimensional viscous Burgers’ equation and the two-

dimensional FitzHugh–Nagumo system. We aim to analyse how much the GP

emulation process impacts the realisable speedup that can be obtained from GParareal

by running experiments with different types of legacy data (more on this later) and
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1.3. Thesis aims and outline

an increasing number of spatial discretisation points (which increases the size of

the ODE system to be solved). These results help us pinpoint where algorithm

performance is hindered and enable us to suggest a few ways to optimise GParareal’s

implementation.

We conclude in Chapter 7 with a short discussion on the significance and reper-

cussions of the algorithms developed in this thesis, collectively assessing the quality

of our results with respect to our original aims. We then finish by setting the stage

for future work in the area of probabilistic PinT algorithms.
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Chapter 2

The Parareal algorithm

Overview

The purpose of this chapter is to lay the foundations for deriving, analysing, and

testing our probabilistic PinT algorithms. We begin by stating the general form of

the IVP to be solved repeatedly throughout this thesis and highlight the types of

IVP that fall within this category. The objective is to find a numerical solution to

such IVPs on a discrete temporal mesh. This solution, however, is assumed to be

computationally intractable to calculate in real time using (expensive) sequential

time-stepping schemes. We will outline a few classic time-stepping methods that we

make use of, justifying why they have been selected over more advanced methods.

This will set the stage for calculating a solution to the IVP in parallel using the

Parareal algorithm.

Next, we show how Parareal can be derived from a multiple-shooting perspective

and explain how it works in practice, making use of not just one, but two sequential

time-stepping schemes. We outline its computational complexity, how it (typically)

schedules computational tasks in the simulation, and how it stops once a solution is

found—all aspects of which will be important when comparing to our algorithms in

later chapters. We state and prove an existing error bound on the Parareal solution

with respect to the fine solver solution, the assumptions and proof techniques of

which we will use to derive bounds for our own algorithms. A short discussion on

how to chose the two sequential time-stepping schemes will precede a numerical

experiment in which we demonstrate how runs in practice. To conclude, we discuss

variants of Parareal that have emerged since its inception that try to improve certain

aspects of its performance, both in general and for specific types of IVP. This will

provide a starting point for discussing related works that have attempted to use

sampling- or learning-based methods to improve Parareal—more details of which

will be provided in Chapters 3 and 5, respectively.

16



2.1. Initial value problem setup

2.1 Initial value problem setup

Throughout this thesis, we will be concerned with solving systems of d ∈ N ODEs of

the form

du

dt
= f

(
t,u(t)

)
over t ∈ [t0, T ], with u(t0) = u0 ∈ U ⊂ Rd, (2.1)

where f : [t0, T ]× U → Rd is a (potentially nonlinear) vector field, u : [t0, T ]→ U is

the time-dependent solution, and u0 is the initial value at time t0. We will assume

that f is sufficiently smooth such that the IVP (2.1) has a unique solution for

all initial conditions of interest and that [t0, T ] ⊂ R such that T < ∞. We seek

numerical solutions Un ≈ u(tn) to (2.1) on a pre-defined mesh t = (t0, . . . , tN ),

where tn+1 = tn + ∆T for fixed ∆T = (T − t0)/N . In the forthcoming sections, each

[tn, tn+1] for n = 0, . . . , N − 1 will be referred to as a “time slice”, where N is the

total number of time slices.

IVPs of the form (2.1) occur frequently when modelling physical processes through-

out nature. They arise in diverse applications areas ranging from mathematical

epidemiology (Murray, 2002) and neuroscience (Brzychczy and Poznanski, 2013)

to fluid and orbital mechanics (Danby, 1997). In many applications, such as the

simulation of plasma dynamics, spatio-temporal PDEs need to be solved and are

usually spatially discretised via a method of lines, e.g. finite differences or spectral

methods, among others (Trefethen, 2000). This discretisation process results in

a large system of ODEs such as (2.1), where d scales with the number of spatial

locations the PDEs are being resolved at.

In any case, we are concerned with IVPs where one or more of the following

aspects:

(i) the interval of integration, [t0, T ],

(ii) the number of mesh points, N + 1,

(iii) or the wallclock time (in seconds) to evaluate the vector field, f ,

is so large that numerical solutions Un take hours, days, or even weeks to obtain

using classical sequential time-stepping schemes (Butcher, 2016; Hairer et al., 1993).

Henceforth, the term time-stepping scheme may be used interchangeably with the

terms numerical integrator, solver, method or flow map—more on these in the next

section.

Many different types of IVP fall into a subset of the three categories above, with

the majority facing issues related to a combination of (i) and (ii) (as they are often

intrinsically linked). The number of mesh points N+1 required to integrate over very

long time intervals [t0, T ] typically needs to be sufficiently large (i.e. ∆T needs to be

sufficiently small) such that stability conditions for the chosen solver are satisfied.
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Chapter 2. The Parareal algorithm

For very long time intervals, ∆T may need to be orders of magnitude smaller than

the length of [t0, T ], drastically increasing the number of computations required and

making the calculation infeasible. For example, systems where the dynamics are stiff,

i.e. systems in which the solution varies very rapidly at certain times but very slowly

at other times, tend to require a very high number of mesh points to resolve. This

is because the solver becomes numerically unstable unless ∆T is very small in the

stiff intervals, leading to an (unnecessarily) slow computation when integrating in

the non-stiff intervals. This occurs in many applications, e.g. fluid mechanics and

chemical reaction modelling, where dynamics evolve on both slow and fast time scales,

often orders of magnitude apart. While there do exist solvers that can adaptively

increase/decrease the size of the time step to deal with stiff dynamics, they still suffer

from computational intractability when [t0, T ] is large enough (relative to the fast

timescale).

A particularly challenging application area for numerical time-stepping methods

is simulating magnetically confined fusion plasmas (i.e. ionised gases) in tokamak

devices (Goldston, 1995). Designing a working thermonuclear fusion reactor that

can control plasmas at extreme temperatures and densities is the key to generating

a clean and sustainable global energy source (CCFE, 2023). Simulating IVPs that

describe plasma behaviour provides us with a way to avoid the costly and difficult task

of running physical experiments in a tokamak, however, they are notoriously time-

consuming to simulate. One aim is to understand the evolution of temperature and

particle densities on a macroscopic time-scale (i.e. on the order of seconds/minutes),

as they are the primary quantities of interest governing reactor performance. However,

the highly nonlinear transport processes (e.g. heat, particle, and momentum fluxes)

which drive macroscopic behaviour are, in turn, governed by turbulent processes

which evolve on a microscopic time-scale (i.e. microseconds). Simulating plasma

IVPs over a number of seconds (at high spatial resolution) is therefore an extremely

costly multi-scale problem (in both time and space), making plasma simulation a

perfect candidate for PinT algorithms.

Many other motivating examples for long time integration can be found in

systems containing an element of randomness, e.g. SDEs. Although we are solving

deterministic ODEs here, the problems caused by (i), (ii), and (iii) extend to SDEs

because the computational time to solve them still becomes infeasible when using

sequential time-stepping schemes for SDEs. Molecular dynamics is one such example,

in which ensemble averages of trajectories, i.e. solutions to the IVP, are required to

observe dynamics that evolve (or may not even appear) over very long time scales

(Legoll et al., 2022). Such dynamical systems may also exhibit metastability, in which

trajectories spend a long time in certain regions of phase space before transitioning

to another (Grafke et al., 2017). Simulations of these long-time trajectories require

small time steps (limited by the stability of the solver), too many of which lead to
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computational intractability.

Other dynamical systems (which do not necessarily contain randomness) can

exhibit chaos, in which trajectories with initial conditions close to one another

diverge exponentially over time. Simulations of these trajectories require small time

steps, not to maintain stability of the solver, but to minimise the divergence of the

numerical solution from the true solution when errors begin to accumulate over time.

With regards to the final point (iii), if a spatio-temporal PDE contains particularly

difficult terms involving nonlinearities, integrals, or high-order derivatives, the cost

of evaluating the vector field f can be very high. Reducing the number of calls to

the vector field f can become very significant if it is expensive to evaluate, as many

(high-order) numerical methods require large numbers of calls to f .

2.1.1 The objective

Regardless of the type of IVP being solved, we can write the solution to (2.1) at time

tn+1 in integral form

u(tn+1) = u(tn) +

∫ tn+1

tn

f
(
s,u(s)

)
ds, n = 0, . . . , N − 1, (2.2)

where the integral is unknown because it depends on the solution u. Different time-

stepping schemes use different methods to approximate the integral in (2.2). The

simplest example being the forward Euler method, i.e. approximating the integral

by ∆Tf(tn,u(tn)). Suppose we have access to a computationally expensive serial

time-stepping scheme, known henceforth as the fine solver F∆T : U → Rd, which

propagates an initial value Un at time tn over an interval of length ∆T , returning a

terminal state Un+1 with high numerical accuracy at time tn+1
1. For the time being,

we will assume that F∆T provides sufficient numerical accuracy to the user such that

the solution to (2.1) calculated by F∆T can be considered ‘exact’, i.e. Un = u(tn).

The objective is to calculate the exact solutions

Un+1 = F∆T (Un), for n = 0, . . . , N − 1, (2.3)

where U0 := u0, without running F∆T N times sequentially, as this calculation is

assumed to be computationally intractable. For perspective, one should expect that

running F∆T over a single time slice, or equivalently calculating (2.3) for a single n,

will take on the order of minutes or hours, thereby making the computation of (2.3)

for all n infeasible in real time. Next, we discuss some possible options for choosing

F∆T .

1We should mention that if (2.1) is nonautonomous, then F∆T should depend explicitly on tn
(and possibly tn+1), however, the extra notation is burdensome and so we drop it. Note, however,
that all of the algorithms described in this thesis work for nonautonomous IVPs.
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Sequential time-stepping methods

Numerical schemes for integrating IVPs, i.e. approximating the right hand side of

(2.2), have been extensively developed and analysed over the past century (Butcher,

2016; Hairer et al., 1993). They are typically categorised into two classes: single- and

multi-step methods. Our focus will be on single-step methods (such as F∆T ), that

take a single initial state and propagate it forward in time (under the action of the

differential equation), returning a terminal state2. In particular, we will let F∆T be

a single-step method that is allowed to take multiple (smaller, δt 6 ∆T ) single-steps

in order to calculate the terminal state—it will become clear as to how this works

when we detail the Parareal algorithm in the next section (see Figure 2.1).

One-step methods take many forms and some have properties that make them

more suited to solving particular types of IVPs than others. Conceptually, the

simplest to understand and implement are pth-order explicit Runge-Kutta methods

(denoted RKp), which return a solution state at tn+1 which depends only on the state

of the system at time tn (Kutta, 1901; Runge, 1895). By pth-order, we mean that

the method accumulates local truncation error O(∆T p+1) after each step forward in

time. An explicit s-stage RKp method3 is written

Un+1 = Un + ∆T

s∑
i=1

biki for n = 0, . . . , N − 1, (2.4)

where

ki = f

(
tn + ci∆T,Un + ∆T

i−1∑
j=1

aijkj

)
. (2.5)

The term A = (aij)i,j=1,...,s is known as the RK matrix, b = (bi)i=1,...,s is the weight

vector, and c = (ci)i=1,...,s is the vector of nodes (all of which can be collated in a

Butcher tableau). For example, the forward Euler (or explicit RK1) scheme, which

has local truncation error O(∆T 2), is a one-stage method given by

Un+1 = Un + ∆Tf
(
tn,Un

)
for n = 0, . . . , N − 1.

Explicit RK methods tend to be the simplest to implement, requiring little work to

calculate each step, however, they typically require very small time steps to remain

2Multi-step methods are very powerful tools that use multiple initial states between [tn, tn+1] to
calculate the terminal state at tn+1. Whilst they can be used to solve (2.1), they are not compatible
with the classic formulation of Parareal (see Section 2.2) without some form of adaptation (Ait-Ameur
et al., 2020, 2021). In addition, they do not work with our probabilistic PinT algorithms (yet!) and
so we do not consider them here.

3The number of stages s in an explicit RKp method refers to the number of intermediate
evaluations of the vector field f (between [tn, tn+1]) that are required in order to estimate the
solution at tn+1. It has been proven that s > p (Butcher, 2016, Theorem 324A) and so we omit the
s-stage notation when referring to an RKp method.
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numerically stable—particularly problematic for stiff systems.

On the other hand, we have pth-order implicit Runge-Kutta methods (denoted

implicit RKp), which return a solution state at time tn+1 which depends on both

the current and future state of the system. Un+1 is calculated the same way as in

(2.4), except that the summation inside the ki term (2.5) ranges over j = 1, . . . , s,

meaning that both the left and right hand sides of (2.4) depend on the state Un+1.

To see this more clearly, consider the backward Euler (or implicit RK1) method

Un+1 = Un + ∆Tf
(
tn + ∆T,Un+1

)
for n = 0, . . . , N − 1.

To calculate Un+1, a (nonlinear) system of equations needs to be solved, making

implementation of implicit methods slightly more involved and costly than an explicit

method. The method does, however, remain numerically stable when taking much

larger time steps, meaning that fewer overall time steps are needed to solve over the

entire time interval. High order numerical accuracy is of course desirable when using

either explicit or implicit methods, however, as the accuracy of the method increases

the computational cost per time step (typically) increases too.

Besides RK methods, there are a wide variety of highly specialised solvers

available for tackling particular types of IVP. Examples include adaptive RK methods

that alter step sizes to meet a pre-defined error tolerance (useful for stiff systems)

and geometric/symplectic methods that preserve certain features of the exact flow

prescribed by the vector field (e.g. energy). In this thesis, however, we will use our

own purpose-built pth-order explicit and implicit RK methods to carry out numerical

experiments on Parareal, SParareal, and GParareal. More often than not, ODE

solvers provided in packages and built-in software are highly optimised for speed and

performance, making use of adaptive time-stepping, stiffness detection, and error

control that we avoid as not to interfere with our experiments. In particular, we wish

to be able to control the number of time steps in each time slice, knowing exactly how

long each slice takes to run in real time (which increases linearly with the number of

time steps in the case of explicit RK methods).

Whilst more complex methods such as adaptive solvers may be more optimal for

integrating certain (e.g. stiff) IVPs, they can result in load imbalance when deployed

in PinT algorithms. Load imbalance arises when some processors finish their tasks

faster than others, having to wait idly before being allowed to execute the next

task and therefore leading to speedup degradation. When using adaptive solvers in

Parareal, for example, integration in some time slices may be faster than in others (if

the dynamics are stiff in some but not others) and so they can interfere with wallclock

time and speedup estimates without proper parallel scheduling workflows (which

we do not focus on). To more clearly contrast and compare our probabilistic PinT

algorithms with Parareal we postpone implementation of more advanced solvers to a
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future work4.

In the next section, we will explain how Parareal iteratively locates approximations

Uk
n to Un (where k = 0, 1, 2, . . . is the iteration number) using two such sequential

time-stepping schemes, one fine- and one coarse-grained.

2.2 The algorithm

2.2.1 Derivation

Parareal is a deterministic multiple shooting algorithm5, first proposed by Lions et al.

(2001), for numerically integrating IVPs such as (2.1) in a time-parallel manner. To

derive the algorithm from first principles, we will follow the steps outlined in the work

of Gander and Vandewalle (2007). Recall that the goal is to calculate the solution

states Un, that would typically be obtained by applying the fine solver serially over

[t0, T ] (i.e. calculating (2.3) sequentially), in parallel. To do this, the IVP (2.1) is

partitioned into N smaller IVPs

dun
dt

= f
(
t,un(t | Un)

)
on t ∈ [tn, tn+1], with un(tn) = Un, (2.6)

for n = 0, . . . , N − 1, that can (theoretically) be solved in parallel. Each time

slice [tn, tn+1] in (2.6) is then assigned its own processor, denoted P1, . . . , PN (an

illustration of this assignment was given in Figure 1.3). We denote un(t | Un) to

be the solution over [tn, tn+1] given the initial value Un at t = tn (this dependence

on the initial values will become clear shortly). Note, however, that only the initial

value U0 = u0 is known, whereas the rest (Un for n > 1) need to be determined

before (2.6) can be solved in parallel. These initial values must satisfy continuity

conditions at the time slices boundaries, i.e.

U0 = u0 and Un = un−1(tn | Un−1) for n = 1, . . . , N. (2.7)

This (nonlinear) system of N + 1 equations ensures the solutions un(t) match at

each tn. Chartier and Philippe (1993) can be credited with suggesting that (2.7)

can be solved for the unknown Un using the Newton-Raphson method, forming the

iterative system

Uk+1
0 = u0, (2.8a)

Uk+1
n+1 = un(tn+1 | Uk

n) +
∂un
∂Un

(tn+1 | Uk
n)
(
Uk+1
n −Uk

n

)
, (2.8b)

4By doing this we try our best to avoid “fooling the masses” when presenting our theoretical
and numerical parallel speedup results in later chapters (Götschel et al., 2021). We assume that if
our algorithms work for the most basic of time-stepping schemes then they should work (potentially
with some adaptation) for more complex schemes.

5It was shown by Gander and Vandewalle (2007) that Parareal is also a multigrid method.
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Figure 2.1: Schematic of the Parareal time domain decomposition. Three levels of
temporal discretisation are shown: time slices (size ∆T ), coarse intervals (size δT ), and
fine intervals (size δt). Note how the discretisations must align with one another in such
a way that δt 6 δT 6 ∆T and (NF/N)δt = (NG/N)δT = ∆T , where NG and NF are
the total number of coarse and fine steps in [t0, T ].

for n = 0, . . . , N − 1, and iteration number k = 0, 1, 2, . . .. This system contains the

unknown solutions un and their partial derivatives, which even if known, would be

computationally expensive to compute6. Crucially, however, the parallel shooting

method developed by Chartier and Philippe (1993) was limited to solving dissipative

ODEs, i.e. (2.1) with a right hand side whose largest eigenvalue is negative. The

invention of Parareal bridged the gap to solve problems with more general right hand

sides.

To solve (2.8) and iteratively calculate the values Uk
n without the partial deriva-

tives, Parareal utilises two (deterministic) serial numerical integrators. These solvers

take an initial state Uk
n at time tn and propagate it, over a time slice of size ∆T , to

a terminal state Uk
n+1 at time tn+1. The fine solver, as described in Section 2.1.1,

is denoted by F∆T : U → Rd. It returns a terminal solution state at very high

numerical accuracy, at very high numerical cost, and is allowed to take many small

intermediate steps δt 6 ∆T to do this. The coarse solver, denoted similarly by

G∆T : U → Rd, returns a terminal state with much lower numerical accuracy and at

much lower computational cost than F∆T , using (typically) larger intermediate time

steps δt 6 δT 6 ∆T (see Figure 2.1). The essential condition is that G∆T must be

much cheaper to run than F∆T , i.e. G∆T must be able to run serially across multiple

time slices to provide relatively cheap low accuracy states whilst the slower F∆T

solver is only permitted to be run in parallel over multiple time slices. This is a strict

requirement for Parareal, or else numerical speedup will not be realised (more on

this in Section 2.2.3).

Returning to (2.8), we can see that (2.8a) is known a priori for all k. To calculate

(2.8b), Lions et al. (2001) proposed approximating the first term in (2.8b) using

the fine solver F∆T (Uk
n) and the second term by a coarse finite difference of the

derivative G∆T (Uk+1
n ) − G∆T (Uk

n) 7. Using the coarse approximation enables the

6In fact, Bellen and Zennaro (1989) first suggested solving (2.7) using Steffensen’s method,
a variant of the Newton-Raphson method that does not require exact calculations of the partial
derivatives. The convergence of their algorithm was highly dependent on the accuracy of the initial
guess to the solution, i.e. {U0

0 , . . . ,U
0
N}, which is difficult to know a priori to simulation. As we

shall see shortly, Parareal provides a reliable method for calculating this initial guess (see (2.9b)).
7One could instead approximate the derivative by a fine finite difference F∆T (Uk+1

n )−F∆T (Uk
n),

however, (2.8b) simply becomes the sequential calculation in (2.3) we are trying to avoid!
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fine computations in (2.8b) to be calculated in parallel, giving rise to the Parareal

algorithm.

Definition 2.1 (Parareal). For the two numerical flow maps F∆T and G∆T described

above, the Parareal scheme is given by

U0
0 = u0, (2.9a)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (2.9b)

Uk+1
n+1 = G∆T (Uk+1

n )︸ ︷︷ ︸
Predictor

+F∆T (Uk
n)− G∆T (Uk

n)︸ ︷︷ ︸
Corrector

0 6 k 6 n 6 N − 1. (2.9c)

The result is that a coarse initial guess (2.9b) is improved with successive Parareal

iterations using the predictor-corrector (PC) update rule (2.9c). From this derivation,

it still may not be clear how Parareal solves (2.1) in parallel and so we shall now

describe how it works in practice.

2.2.2 How it works

Pseudocode for an implementation of Parareal is given in Algorithm 1 alongside a

graphical illustration of the first iteration in Figure 2.2. To begin (iteration k = 0),

a coarse approximation (2.9b) to (2.1) is calculated by applying G∆T sequentially to

the exact initial condition (2.9a) on a single processor. Following this, the fine solver

is used to propagate each approximation in (2.9b) in parallel, on N processors, to

obtain F∆T (U0
n), n = 0, . . . , N − 1. These values are then ready to be used (during

iteration k = 1) in the PC update (2.9c). Starting with the known exact solution

at t1, G∆T is applied to ‘predict’ the state at t2 and is then ‘corrected’ using the

residual between the fine and coarse states from the prior iteration. This prediction

and correction process is repeated sequentially up to time tN . The next step is to

check the stopping criteria, to determine whether Parareal has “converged” or not.

For a pre-defined stopping tolerance ε > 0, the Parareal states Uk
n are deemed to

have converged up to time tI if

‖Uk
n −Uk−1

n ‖∞ < ε ∀n 6 I, (2.10)

where ‖ · ‖∞ denotes the usual infinity norm. This criterion is standard for Parareal

(Gander and Hairer, 2008; Garrido et al., 2006; Maday and Turinici, 2002), however,

other choices are available. For example, one could instead take the relative (instead

of absolute) error, the average relative error between fine solutions over a time slice

(Samaddar et al., 2010, 2019), or measure the total energy of the system at each

iteration (Dai et al., 2013). Unconverged states, i.e. Uk
n for n > I, are updated in

future iterations k > 1 by carrying out further parallel F∆T runs on each Uk
n , followed

by an update using the PC (2.9c). Once I = N , we say that Parareal has taken k
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Figure 2.2: First iteration of Parareal to numerically approximate the exact solution
(2.3) of a scalar ODE, obtained via a serial run of the fine solver (black line). The coarse
initial guess found using G∆T (yellow lines and dots) is followed by the parallel runs of
F∆T from these guesses (blue lines). The coarse predictions from G∆T (red lines) are
then used in the PC update (2.9c) (red dots). Note that the blue and black trajectories
in the first interval will overlap, we distinguish them here for clarity.

(out of a maximum N) iterations to converge. By saying that Parareal converges in

k iterations, we do not necessarily mean that Parareal has recovered the fine solution

(2.3). In fact, we are slightly abusing terminology by instead meaning that Parareal

stops after k iterations—this convention is widely accepted and embedded within

the Parareal literature. Whilst Parareal should in fact recover the fine solution, it

will not recover it exactly. A more detailed discussion on what it means for the

Parareal solution to converge to the fine solution will be given in Section 2.2.4. In

its original formulation, Parareal iteratively improves solutions across all time steps,

regardless of whether they have converged or not. The version of Parareal described

here does not iterate over solutions which have already converged, avoiding the

waste of computational resources—this has no effect on the final number of iterations

(Elwasif et al., 2011; Garrido et al., 2006). This modification allows us to incorporate

stochastic sampling in Chapter 3 and the emulation processes in Chapter 5.

2.2.3 Computational complexity

Estimating computational complexity is an important stage in the analysis of any

algorithm (especially those designed to run in parallel), enabling one to compare

the performance of different algorithms that are designed to solve the same problem.

Complexity analysis usually involves calculating the number of FLOPS required to

solve a given problem, however, this is difficult for Parareal due to the freedom in

the choice of the solvers, number of time slices and time steps. Instead, we will

measure computational complexity in terms of wallclock time, parallel speedup and

parallel efficiency. We can then use these three quantities to directly compare the

performance of Parareal, SParareal, and GParareal.
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Algorithm 1: Parareal

Initialise: Set counters k = I = 0 and define Uk
n , Ûk

n and Ũk
n as the PC,

coarse, and fine solutions at the nth time step and kth iteration
respectively (recall Uk

0 = Ûk
0 = Ũk

0 = u0 ∀k).
%Calculate initial guess using G∆T serially on processor P1.

1 for n = 1 to N do

2 Û0
n = G∆T (Û0

n−1);

3 U0
n = Û0

n;

4 end
5 for k = 1 to N do

%Propagate the PC states (from iteration k − 1) on each slice

by running F∆T in parallel on processors PI+1, . . . , PN.
6 for n = I + 1 to N do

7 Ũk−1
n = F∆T (Uk−1

n−1);
8 end

%Propagate the PC states (at iteration k) with G∆T on any

processor. Then, correct this value using coarse and fine

states obtained during iteration k − 1 (cannot be carried

out in parallel).

9 for n = I + 1 to N do

10 Ûk
n = G∆T (Uk

n−1);

11 Uk
n = Ûk

n + Ũk−1
n − Ûk−1

n ;

12 end
%Check if stopping criterion met, saving all solutions up to

time step tI before next iteration.

13 I = max
n∈{I+1,...,N}

‖Uk
i −U

k−1
i ‖∞ < ε ∀i < n;

%If tolerance is met for all time steps, algorithm stops.

14 if I = N then
15 return k, Uk

· ;
16 end

17 end

After k iterations in Parareal, the exact initial condition (u0) will have been

propagated forward in time by F∆T k times. Therefore, the solution up to time tk

(at minimum) will have converged to the fine solver solution—this property will be

shown rigorously in Section 2.2.4. It should then be clear that if Parareal converges

in k = N iterations, the solution will be equal to the one found by calculating (2.3)

serially, at even higher computational cost. This means that to realise significant

parallel speedup, Parareal needs to converge in k � N iterations. We will now show

explicitly why this requirement is necessary.

Without loss of generality, assume running F∆T over any time slice [tn, tn+1],

n ∈ {0, . . . , N−1}, takes wallclock time TF seconds—denote time TG similarly for G∆T .

Therefore, calculating (2.3) using F∆T serially, takes approximately Tserial = NTF

26



2.2. The algorithm

Figure 2.3: Theoretical speedup (2.12) of Parareal against iteration number k for
problems with a varying ratio of coarse to fine solver wallclock runtimes (TG/TF ) using
N = 512 processors. The dashed line separates regions in which speedup and no speedup
would be achieved.

seconds. Using Parareal, the total wallclock time (in the worst case, excluding any

serial overheads and communication time) can be approximated by

Tpara ≈ NTG︸︷︷︸
Iteration 0

+

k∑
i=1

(
TF + (N − i)TG

)
︸ ︷︷ ︸

Iterations 1 to k

= kTF + (k + 1)
(
N − k

2

)
TG . (2.11)

This estimate provides an approximate lower bound on the theoretical runtime of

Parareal. This can then be used to estimate the parallel speedup

Spara ≈
Tserial

Tpara
=
[ k
N

+ (k + 1)
(
1− k

2N

)TG
TF

]−1
. (2.12)

Using the parallel speedup, we can also quantify the parallel efficiency

Epara ≈
Spara

N
=

[
k + (k + 1)

(
N − k

2

)TG
TF

]−1

. (2.13)

The efficiency provides a measure of how well the parallel computing resources

are utilised in a given simulation. Typically for Parareal, the number of iterations

required to converge to a solution is at least k > 2, meaning that the parallel efficiency

can never exceed 0.5 (assuming negligible TG).

To maximise (2.12), both the number of iterations k and the ratio TG/TF should

be as small as possible. In Figure 2.3, we vary TG/TF to examine the effect on

theoretical speedup (2.12) for fixed N = 512 and varying k. We can see that if TG
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Figure 2.4: Computational task scheduling during three iterations of Parareal compared
with a full serial integration. The coloured blocks represent the wallclock time any given
processor spends on a task. Coarse runs are shown in yellow, fine runs in blue, and any
idle time in white. The wallclock time is given on the axis at the bottom, indicating
both Tpara and Tserial.

is negligible compared to TF then the speedup behaves like N/k and is realised for

any k < N . However, once this ratio increases we see an increasing need for a lower

iteration count in order to achieve any speedup (the lower the better). If TG/TF is

too large then no speedup is realised for any k. In practice, however, there is no

way to a priori estimate k without actually carrying out the Parareal simulation.

In addition, there is a trade-off between k and the ratio TG/TF , as fast G∆T solvers

(with sufficient accuracy to still guarantee convergence) typically cause Parareal to

require more iterations to converge, increasing k. In any case, we can see that the

best and worst cases are convergence in either k = 1 or k = N iterations respectively.

The speedup relation in (2.12) is useful as it can be used to estimate speedup for

a range of k values using only the total number of processors available N and the

ratio TG/TF (which should be straightforward to estimate).

It is important to note that we ignore serial overheads (which include communi-

cation between processors and idle time) that inevitably cause discrepancies between

numerical results and the theoretical estimates in (2.11)–(2.13). An illustration of the

computational task scheduling during the first iteration of Parareal vs. a full serial

integration is given in Figure 2.4. This scheduling implementation does not account

for communication time and is clearly not optimal as a number of processors remain

idle when coarse runs are being carried out. It is therefore worth mentioning that

there has been work on optimising the standard scheduling process and redistributing

load imbalance in Parareal (Aubanel, 2011; Bolten et al., 2022; Elwasif et al., 2011),

leading to significant improvements in numerical speedup (almost double), however,

these can often depend highly on the HPC architecture available (Ruprecht, 2017).
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2.2.4 Error bound analysis

Deriving rigorous error bounds for PinT methods is important in demonstrating that

numerical solutions obtained in parallel are meaningful, accurate, and that they can

be compared to one another (Gander et al., 2022). In this section, we will outline the

existing results that demonstrate how Parareal iteratively recovers the fine solution

(2.3). We will use some of the proof techniques mentioned here to derive error bounds

for both SParareal and GParareal in Chapters 4 and 5, respectively.

In the original work, Lions et al. (2001) derived an error bound for Parareal

applied to the scalar linear ODE problem, i.e. f(t,u(t)) := λu in (2.1) for λ ∈ C.

They fixed the iteration number k, chose F∆T as the exact solver, and G∆T as the

backward Euler (implicit RK1) method to find that

max
16n6N

|u(tn)− Ukn | 6 Ck∆T
k+1,

where Ck is some constant that grows with k. This result shows that the Parareal

error at a fixed iteration k goes to zero as ∆T → 0 and behaves like an O(∆T k+1)

method. It does not, however, provide any information about how the algorithm

behaves as k increases (due to the fact that Ck increases with k) and sending

∆T → 0 in Parareal is not really practical as this would require infinitely many time

slices/processors N .

Subsequent work generalised this result, showing that if G∆T is a method of

order p (i.e. has local truncation error O(∆T p+1)) then Parareal is a method of

order p(k + 1)) at iteration k (Bal, 2005; Bal and Maday, 2002). Noticing that ∆T

should be fixed and k allowed to increase, Gander and Vandewalle (2007) instead

derived error bounds for the scalar problem that have linear and superlinear rates of

convergence on unbounded and bounded time intervals, respectively (see Appendix A

for a brief recap on rates of convergence). With a little extra work, one can also relax

the assumption that F∆T is the exact solver, to derive a bound that holds when F∆T

is assumed to be a method of order q (q > p)—refer to (Gander and Vandewalle,

2007, Sec. 4.5).

Following the analysis on linear problems, Gander and Hairer (2008) derived

the most general result so far. They used the generating function method (see

Appendix D.2) to derive a superlinear bound for (autonomous) nonlinear systems of

ODEs on bounded intervals. Our interest is in Theorem 2.2 (first derived by Gander

et al. (2022)), a tighter bound than the one provided in Gander and Hairer (2008).

As before, it is derived under the assumption that F∆T is the exact solver and G∆T

is a method of order p which now satisfies a Lipschitz condition—these assumptions

will be described in full detail in Section 4.2 when we derive similar error bounds for

the SParareal scheme.
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Theorem 2.2 (Superlinear error bound for Parareal). Suppose the Parareal scheme

(2.9) satisfies Assumptions 4.1, 4.2, and 4.3. Then, the error of the solution to the

nonlinear ODE system (2.1) at iteration k and time tn satisfies

‖u(tn)−Uk
n‖∞ 6 DAk

n−(k+1)∑
`=0

(
`+ k

`

)
B`, 1 6 k 6 n 6 N,

with constants A = C1∆T p+1, B = LG, and D = C2A.

Proof. See Appendix B.

From this result it can be seen (in the constant A) that the accuracy of Parareal

improves with each iteration and that the error goes to zero when ∆T → 0, en-

capsulating the results of Lions et al. (2001) and Bal (2005). What is new is the

superlinear convergence of the error toward zero as k increases (due to the k in both

the binomial term and summation). Notice that, as expected, the error is exactly

zero when k = n, i.e. after k propagations of F∆T , the exact solution is recovered at

time step tk. Convergence results such as Theorem 2.2 are beginning to appear for a

number of Parareal variants using the generating function methodology. Examples

include, Parareal for systems of ODEs that admit low-rank approximations (Carrel

et al., 2022) and Parareal with multiple levels/time averaging (Rosemeier et al.,

2022). In the latter case, bounds were also derived in the case where F∆T is no longer

assumed to be the exact solver, but instead a method order q > p, see (Rosemeier

et al., 2022, Theorem 3.3).

2.2.5 Choice of numerical solvers

As we saw in Section 2.2.3, the choice of solvers F∆T and G∆T has a profound impact

on the realisable parallel speedup from Parareal due to the trade-off between cost

and accuracy (recall Figure 2.3). What follows is an outline of things to consider

when choosing the solvers.

The fine solver F∆T

Typically, there is not much freedom in the choice of the fine solver F∆T because

the requirements for F∆T (time step δt, order of accuracy q etc.) are determined

by properties of the IVP being solved and by the needs of the user. For example,

stiff problems may require the use of an adaptive F∆T solver, chaotic problems may

require a very small δt, and spatially-dependent PDEs (if using an explicit solver for

F∆T ) may need to satisfy a Courant-Friedrichs-Lewy condition. Furthermore, the

user may instead wish to preserve certain features of the system by using a geometric

integrator. The only requirement in any of these cases is that F∆T be sufficiently

computationally expensive, i.e. TF be sufficiently large, that F∆T cannot be run
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over [t0, T ] sequentially in feasible time. If it could, then there would be no need to

use Parareal in the first place! In our numerical simulations, we will make use of

high-order explicit RK methods.

The coarse solver G∆T

On the other hand, there is much more freedom in the choice of the coarse solver

G∆T , even though a number of conditions must be satisfied for Parareal to remain

stable and therefore converge to the fine solution. As discussed before, G∆T must

be chosen such that it is fast compared to the fine solver (i.e. TG � TF) but also

accurate enough that it provides reasonable approximations to the solutions—criteria

on how accurate G∆T needs to be can be found in (Maday and Mula, 2020, Sec. 2.2).

An additional factor to consider is the numerical stability of Parareal, which has

been shown to depend explicitly on the stability of both F∆T and G∆T (Bal, 2005;

Farhat and Chandesris, 2003; Ruprecht, 2014; Southworth, 2019; Staff and Rønquist,

2005). The choice of F∆T should automatically be stable for solving the IVP of

interest (otherwise an alternative method should be chosen!) and so one must be

careful to select a stable coarse solver. It can seem natural to therefore choose an

implicit solver for G∆T , as they are much more stable than explicit solvers, however,

they are much more costly to implement (increasing the ratio TG/TF ).

Without going into the technical details for satisfying the conditions of stability

and accuracy8, we now discuss some possible choices for G∆T . This choice will

depend heavily on the IVP in question but should not really affect the accuracy of

the final solution generated by Parareal as it should still recover the fine solution.

The first option is to choose G∆T to be the same solver as F∆T but with a coarser

temporal resolution, i.e. larger time steps δT > δt. It should be noted, however,

that this may not be feasible for many IVPs where the size of δT is limited by the

numerical stability of F∆T—which may depend on a spatial discretisation (Baffico

et al., 2002; Baudron et al., 2014a; Gander and Hairer, 2008). Alternatively, G∆T can

be a different method than F∆T , one that has a lower order of numerical accuracy

p 6 q (Farhat and Chandesris, 2003; Samaddar et al., 2010; Trindade and Pereira,

2006). For more complex IVPs, work has shown that G∆T can be chosen with coarser

time steps and/or lower numerical accuracy to solve simplified model equations that

have reduced physics or, perhaps, approximate the dynamics of the IVP (compared

to F∆T ) (Engblom, 2009; Grigori et al., 2021; Legoll et al., 2022; Meng et al., 2020).

For spatially-dependent PDEs, G∆T can resolve the IVP using a coarser spatial grid

(Clarke et al., 2020; Fischer et al., 2005; Ruprecht, 2014; Samaddar et al., 2010).

There have also been attempts to “learn” coarse solvers using different types of

8It is very difficult to translate the mathematical conditions required for the stability and
accuracy of F∆T and G∆T into a practical method for choosing F∆T and G∆T for a given IVP. In
most applications of Parareal, choices for the solvers (mostly always G∆T ) have been guided by
intuition or trial and error.
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machine learning models—these will be discussed in detail in Section 5.1. Some of

the aforementioned techniques have also been used in conjunction with one another.

All in all, one must carefully choose G∆T , bearing in mind that a more numerically

accurate/stable coarse solver may reduce the number of iterations in Parareal but

will increase the ratio TG/TF , leading to possible speedup degradation. For example,

an implicit RK method with a large time step will be more numerically stable than

its explicit RK counterpart, however, it will incur a much greater numerical cost due

to the fact it has to solve a (typically nonlinear) system at each time step. This type

of trade-off has led to a demand for accurate but fast coarse solvers for Parareal

and has been the subject of much discussion (Nielsen, 2012). In our simulations, we

will make use of low-order explicit/implicit methods for G∆T which will be cheap

compared to the selected fine solver.

Choosing an appropriate coarse solver is one of the most important aspects of

running Parareal. It is the key to realising good numerical speedup and so a lot

of effort has been dedicated to testing different approaches. Our goal is not to

implement a new type of coarse solver but rather use probabilistic methods to try to

harness the existing coarse (and fine) solution information obtained throughout a

Parareal simulation. In Chapter 3, we sample from probability distributions with

a variance proportional to the residual between coarse solves at different input

locations (which is usually large during early iterations). The idea is that SParareal

can take samples from these distributions and more efficiently explore the solution

space, ideally converging to the exact solution values faster than deterministically.

In Chapter 5, we use a GP emulator to capture variability in the residual between

the fine and coarse solvers (i.e. we model F∆T − G∆T ), training the emulator on

known fine and coarse information. We showcase the effectiveness of this approach

by demonstrating that GParareal can converge to solutions in cases where the coarse

solver is too poor (i.e. of insufficient accuracy) for Parareal. These efforts should

help extract further numerical speedup and widen the pool of possible choices for

G∆T when running a Parareal-type simulation.

2.2.6 Numerical experiment: Arenstorf Orbit

In this section, we use Parareal to solve a system of ODEs that models a special

case of the three-body problem—a similar experiment was presented in Gander and

Hairer (2008). Suppose that a large body (e.g. the Earth) is orbited by a smaller,

but still large, body (e.g. the Moon) in the two-dimensional plane. We consider the

motion of an even smaller object (e.g. a satellite) between the two larger bodies (its

mass is negligible compared to these bodies). In Figure 2.5, we can see that the

Earth is fixed at the origin whilst the Moon, initially located at (1, 0), orbits the

Earth (dashed line). Arenstorf (1963) discovered equations that would allow for a

(single) stable periodic orbit of the small object between the Earth and Moon due to
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gravity (solid black line) over the period t ∈ [0, 17.06521656015796]. Coupled with

initial conditions u(0) = (0.994, 0, 0,−2.00158510637908)ᵀ, the system is given by

du1

dt
= u3,

du2

dt
= u4,

du3

dt
= u1 + 2u4 −

b(u1 + a)

((u1 + a)2 + u2
2)3/2

− a(u1 − b)
((u1 − b)2 + u2

2)3/2
,

du4

dt
= u2 − 2u3 −

bu2

((u1 + a)2 + u2
2)3/2

− au2

((u1 − b)2 + u2
2)3/2

,

(2.14)

where u1 and u2 are the positions of the small object at time t and u3 and u4 are the

respective velocities. The constant a = 0.012277471 is the relative mass of the Moon

compared to the combined mass of the Moon and Earth, while b = 1− a is the same

but for Earth. This system is very sensitive to small changes in initial conditions and

so accuracy (hence a small time step) is of paramount importance when integrating

this system forward in time.

For this experiment, we select solvers G∆T = RK2 and F∆T = RK8 with NG =

(T − t0)/δT = 1000 and NF = (T − t0)/δt = 2× 105 steps, respectively. We integrate

over one orbital period using N = 40 time slices and a stopping tolerance ε = 10−6.

We observe a good match between the solutions simulated by Parareal (after reaching

(a)
(b)

Figure 2.5: Numerical results obtained solving the Arenstorf system (2.14) over one
orbital period using Parareal. (a) The position of the satellite, between the Moon (black
dot) and Earth (blue dot), is plotted using the fine solver (solid black) and Parareal (red
stars) in the (u1, u2)-plane (i.e. the (x, y)-plane). Also shown is the orbit of the Moon
around the Earth (dashed black) and the direction of motion of both the satellite and
the Moon (arrows). (b) The velocity of the satellite in the horizontal (u3) and vertical
(u4) directions plotted against time using the fine solver (solid black) and Parareal (red
stars). Note that Parareal solutions are plotted only at times t for clarity.
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(a) (b)

Figure 2.6: (a) Maximum absolute errors (2.10) between successive Parareal solutions
(Uk

n and Uk−1
n ) over time, plotted at each iteration k until tolerance ε = 10−6 is met.

(b) Maximum absolute errors between the Parareal solution Uk
n and the fine solution

Un at each iteration k, plotted over time.

the stopping tolerance) and the solution obtained by running the fine solver serially.

In Figure 2.6(a), we plot how the difference between Parareal solutions iteratively

reach the stopping criterion (2.10), stopping once below ε for all time steps. After

k = 3 iterations, we observe that the solution in the first three time slices have

reached the stopping tolerance. Following the fourth iteration, however, seven time

slices converge. What this means is that Parareal is avoiding having to run F∆T seven

times serially, instead only running F∆T once (during the fourth iteration). The key

to observing faster speedup with Parareal is if it can reach the stopping tolerance

in more than one time slice each iteration (the more time slices that converge, the

better). In a similar vein, we can show how close the Parareal solution is to the

(serially obtained) fine solution at each iteration in Figure 2.6(b). As expected, the

accuracy of the Parareal solution is poor after just one iteration—of order O(102)

from the fine solution. The error improves drastically within a few iterations, reaching

an accuracy of O(10−7) after the stopping tolerance is met at iteration k = 6. These

results showcase how Parareal can locate the correct solution, even from a very poor

initial guess.

Table 2.1: Numerical wallclock time, speedup, and efficiency results obtained solving
the Arenstorf system (2.14) using Parareal—refer back to Section 2.2.3 for notation. The
results in brackets are the corresponding theoretical results calculated using (2.11)–(2.13).
All timings are measured in seconds.

N k TG TF Tserial Tpara Spara Epara

40 6 2.92E−2 85.07 3.40E3 522.14 (517.97) 6.52 (6.57) 0.16 (0.16)
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We do, however, need to calculate runtimes to truly demonstrate the power of

Parareal. To do this, we increase NF to 2 × 108, thereby increasing the cost of

running F∆T relative to G∆T (so that TG/TF is small and we can realise speedup)9.

The numerical results in Table 2.1 display the runtimes of the coarse and fine solvers

over a time slice, the runtime of the serial simulation, the Parareal runtime, and the

corresponding speedup/efficiency realised. We see that Parareal takes k = 6 (out of a

maximum N = 40) iterations to converge, yielding a wallclock runtime 6.52× faster

than what the serial fine solver can achieve. The iterative nature of Parareal, however,

leads to very poor parallel efficiency—indicating that Parareal does not utilise its

parallel resources very well. Overall, the numerical results match the theoretical

estimates calculated in (2.11)–(2.13) nicely, with slight discrepancies coming from

some serial overheads/parallel communication ignored by the theory. These brief

results have given us an insight into how Parareal works in practice—many more

simulations will be carried out using Parareal in later chapters.

2.3 Variants and related work

Now that we have discussed Parareal in detail, we provide a brief overview of some of

the different variants that have emerged since its inception to tackle various challenges

the standard implementation suffers from when faced with solving particular types of

IVP. Note that the following variants are not necessarily related to the probabilistic

PinT methods we propose later on and so we save a full exposition of those that are

related to sampling- and learning-based methods until Chapters 3 and 5, respectively.

Parareal has been shown to work very well for diffusive (e.g. parabolic-type) IVPs,

however, it has been known to repeatedly struggle with non-diffusive (e.g. hyperbolic

or advection-dominated) IVPs (Bal, 2005; Gander, 2008; Staff and Rønquist, 2005).

Non-diffusive IVPs occur frequently throughout the physical sciences, most notably

perhaps in fluid dynamics, where differential operators contain imaginary eigenvalues

and therefore solutions exhibit wave-type behaviour. By writing Parareal in iteration

matrix form, Ruprecht (2018) investigates its wave propagation characteristics, finding

that instability (i.e. slow or non-convergence) arises due to phase errors generated

by the coarse solver and amplification factors in higher wave numbers. Iizuka and

Ono (2018) report similar findings through numerical investigation and show that

using coarse solvers with the same phase accuracy as the fine solver is one way to

avoid deteriorating performance, however, one must note that using such solvers is

typically more computationally expensive. One variant that has been shown to work

well on non-diffusive IVPs is Krylov-enhanced Parareal (Gander and Petcu, 2008;

9We excessively increase NF in experiments throughout this thesis to increase TF and generate
meaningful speedup results that are largely absent of communication and other serial costs. Clearly
this would not be done in practice but is necessary for some of the low-dimensional systems tested
here.
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Ruprecht and Krause, 2012), which improves the accuracy of the coarse solver using

Krylov subspaces built from Parareal solution information. In Chapter 5 we will

discuss this variant at length in the context of learning-based methods. Also worth

mentioning is the variant developed by Buvoli and Minion (2023) in which they try

to stabilise Parareal by slightly re-formulating the IVP (splitting it into linear and

nonlinear parts) and using exponential RK methods as coarse/fine solvers. Ensuring

PinT algorithms can handle non-diffusive IVPs is of great importance given that

they arise so frequently in mathematical modelling, e.g. numerical weather prediction

and plasma physics.

When solving certain IVPs (e.g. Hamiltonian systems) we may also wish to

preserve invariant dynamics or conserve geometric/physical quantities of the system

(e.g. energy, angular momentum) over long integration times. Bal and Wu (2008)

and Dai et al. (2013) show that a blind application of Parareal using symplectic

coarse/fine integrators (that serially conserve such properties on their own) does

not work. This is because the summation of symplectic functions in the PC does

not preserve symplecticity and so a slightly more involved method of composing

the symplectic functions in the PC is required. Gander and Hairer (2014) analyse

this problem further, deriving long-time error estimates for Parareal applied to

Hamiltonian systems.

There are far too many Parareal variants to cover entirely in this section, however,

we mention a few more for completeness10. Some variants tackle time-scale separation

(Haut and Wingate, 2014; Legoll et al., 2020; Rosemeier et al., 2022), time periodicity

(Gander et al., 2013b), and adaptive slicing of the time interval (to avoid solution

blow up) in longtime simulations of molecular dynamics (Legoll et al., 2022). Others

have emerged to to deal with more specific IVPs including: Parareal for low-rank

systems (Carrel et al., 2022), PDE constrained optimisation (Gander et al., 2020),

and data assimilation (Bhatt et al., 2022).

2.4 Summary

In this chapter, we formulated the problem of interest and stated our objective

of finding a high accuracy numerical solution to the IVP (2.1). Typically, such

a solution (2.3) is obtained by using an expensive (serial) time stepping method

known as the fine solver F∆T . We derived Parareal from first principles, showing

how it makes use of F∆T as well as a cheaper, lower accuracy coarse solver G∆T to

integrate the IVP in parallel using a PC update rule. Its iterative nature means

that convergence occurs in k iterations, yielding a maximal speedup of N/k (that we

hope to improve upon). Whilst F∆T can be chosen (almost) freely, we caution that

G∆T must be chosen to be computationally inexpensive (compared to F∆T ) but still

10A more complete list can be found at http://parallel-in-time.org/references/index.html.
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2.4. Summary

numerically accurate enough to roughly approximate the IVP solution. Theoretical

computational complexity estimates were provided and will be repeatedly referred

to when we need to analyse and compare our own probabilistic PinT methods with

Parareal. In addition, we provided a brief insight into the kind of error bound

analysis that we will need to carry out to demonstrate that our algorithms locate

accurate solutions. The demonstration of how Parareal works in practice on a small

test problem is given to highlight its iterative nature (and therefore show when it

stops), how we measure numerical accuracy (against the F∆T solutions), and what

kind of numerical speedup it can generate. The framework of this chapter will help

set the stage for the probabilistic PinT algorithms we are about to present.
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Chapter 3

SParareal I: a sampling-based

time-parallel algorithm

Overview

In this chapter we propose SParareal, a sampling-based time-parallel algorithm that

can solve IVPs (2.1) using probability distributions constructed from known fine

and coarse solution data. The idea is to sample candidate solutions from these

distributions in each time slice, propagate each one on its own processor using the

fine solver, and select an optimal state that will provide us with a “better” correction

in the Parareal PC update. The intuition is that with sufficiently many samples,

better corrections will lead to a reduction in the number of iterations taken until

convergence, yielding increased parallel speedup.

We begin in Section 3.1 by explaining the intuition behind SParareal and dis-

cussing how the first PinT algorithm and a sampling-based PN ODE solver inspired

its development. In Section 3.2, we introduce SParareal, explaining how it works, how

the probability distributions are constructed and how the sampling and propagation

process is carried out. We then elucidate how a variety of different “sampling rules”

can be flexibly interchanged to carry out the sampling depending on whether any

information is known about the solution to the IVP a priori to simulation. This

is followed by remarks on computational complexity, where we derive expressions

that show the wallclock time of an SParareal iteration is approximately the same

as one in Parareal. We also discuss how an increasing number of samples reduces

the number of iterations required until convergence. To conclude, we remark on the

convergence of the SParareal solutions to the exact fine solution (2.3)—which will be

analysed fully in Chapter 4.

In Section 3.3, we conduct numerical experiments that showcase the performance

of SParareal using different sampling rules and varying numbers of random samples.

Findings are presented for three nonlinear ODE systems (additional experiments are

38



3.1. Motivation and background

provided in Appendix C), demonstrating that for sufficiently many samples, SParareal

almost certainly converges in fewer iterations than Parareal and generates (stochastic)

solutions of comparable numerical accuracy. Results show that performance is

improved by generating correlated, as opposed to uncorrelated, random samples. In

Section 3.4, we discuss the advantages and disadvantages of SParareal, highlighting

what can be improved and how this lead to the development of GParareal in Chapter 5.

3.1 Motivation and background

Throughout this chapter, we seek the same high resolution numerical solutions to (2.1)

as given by (2.3). The iteratively improved solutions from SParareal will be denoted

using the same notation as Parareal, i.e. as Uk
n (where Uk

0 = U0 = u0 ∀k > 0). The

IVP setup, the solvers, and the notation will be the same as Parareal except where

otherwise defined.

3.1.1 Our approach

As we saw in Section 2.2.3, the major obstacle preventing further parallel speedup

gains in (2.12) is the choice of G∆T and so focus is often directed toward locating

faster, more accurate, coarse solvers to achieve reductions in both k and TG . Finding

better coarse solvers is notoriously difficult and in many applications there may not be

any alternative choices for G∆T due to limitations on step sizes or required numerical

accuracy. In the PC (2.9c), the solution states Uk
n are updated deterministically using

a correction term based on a single fine and coarse solution from the previous iteration

k − 1. Our aim is to improve the accuracy of this correction, not by modifying

G∆T , but by making use of the existing fine and coarse solution data to from prior

iterations. We do this by using the data to construct probability distributions over

regions of state space where we believe the exact states Un may exist. Sampling

from these distributions should allow us to more efficiently explore the solution space

and locate the exact states in faster wallclock time.

The main idea is that, instead of using a single deterministically calculated

correction term to update the PC solution, we sample M candidate initial values

αkn,1, . . . ,α
k
n,M , at each unconverged time slice tn. These samples are drawn from

probability distributions defined by a pre-specified sampling rule with given marginal

means and standard deviations (see Section 3.2.2). These parameters are defined

using the most recently obtained fine and coarse solution information so that we

ensure samples are drawn in the neighbourhood of the current PC solution Uk
n . All

of the sampled initial values are then propagated in parallel using F∆T . Given a

sufficient number of samples is taken, one sample will be closer (in the Euclidean

sense) to the exact root Un that equation (2.9c) is converging toward. To try and

locate the best sample at each tn, we select an “optimal” sample α̂kn by identifying
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which sequence of samples generate the most continuous trajectory, at the fine

resolution, in state space across [t0, tN ]. These optimal samples are then subsequently

propagated (rapidly) forward in time using G∆T and then used directly in the new

PC update:

Uk+1
n+1 = G∆T (Uk+1

n )︸ ︷︷ ︸
prediction

+F∆T (α̂kn)− G∆T (α̂kn)︸ ︷︷ ︸
correction

, 1 6 k 6 n < N.

The intuition is that for increasing values of M , the stochastically generated set

of initial values should be closer to the exact states Un than those found purely

deterministically and therefore converge in fewer iterations.

For example, consider a scenario in which the PC in Parareal is provided initial

values V (0), yielding convergence in k iterations and generating the sequence of

solutions {V (0),V (1), . . . ,V (k)}. Instead of starting with V (0), suppose we sample

initial values from a probability distribution and choose some “better” starting point

which is close to, say, V (i) for some i ∈ {1, . . . , k − 1}. Then the sequence generated

by the PC would instead be approximately {V (i),V (i+1), . . . ,V (k)}, converging in

k− i+ 1 iterations. Therefore, given a fixed number of samples M , SParareal should

converge in fewer than k iterations with some non-zero probability, returning a

stochastic solution to the IVP. Stochastic methods, that generate different solutions

after each independent simulation, are useful in that they are able to explore the

solution space more than deterministic methods, potentially revealing unexpected

behaviour in the dynamical system. In addition, if we can obtain such solutions

in faster wallclock time than Parareal then one can launch additional simulations

obtaining a distribution of stochastic trajectories over the solution (something we

will show later).

3.1.2 Related work

The idea of propagating multiple initial values in each time slice forward in time (in

parallel) is not new. In the first known work proposing a PinT method, Nievergelt

(1964) proposed solving IVPs in parallel by choosing the M (sampled) initial values,

discussed above, deterministically. For a scalar IVP, he suggests choosing M initial

values U0
n,m in each time slice tn close to the exact (unknown) solution Un and

carrying out M(N − 1) + 1 propagations using F∆T in parallel—see Figure 3.1 for

an illustration. The M values are chosen close to some initial guess U0
n, e.g. a coarse

initial guess as in Parareal. The method for determining the solution across [t0, T ]

from this ensemble of trajectories is to (sequentially) combine two of the samples in

each time slice [tn, tn+1] using an interpolation coefficient, i.e.

U1
n+1 = rF∆T (U0

n,m) + (1− r)F∆T (U0
n,m+1), (3.1)
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Figure 3.1: Illustration of Nievergelt’s method for numerically approximating the
exact solution (2.3) of a scalar ODE, obtained via a serial run of the fine solver (black
line). A number of candidate initial values U0

n,m (blue dots), selected close to a coarse
initial guess U0

n calculated using G∆T (yellow dots and lines), are propagated forward in
time using F∆T in parallel (blue dots and lines). These trajectories are used to directly
calculate a solution to the IVP using (3.1) (red dots).

where r =
(
U1
n − U0

n,m+1

)
/
(
U0
n,m − U0

n,m+1

)
and m is chosen such that U1

n ∈
[U0
n,m, U

0
n,m+1]. This direct (non-iterative) method of solving in parallel works

well for scalar linear ODEs, however, suffers from interpolation errors for nonlinear

problems, does not generalise for systems of ODEs, and questions remain over how

to efficiently (or correctly) choose the M initial values. Nievergelt knew that even

though his algorithm was not a practical method for solving IVPs, it would lay

the foundations for better methods in the future that have now become known as

PinT methods1. With SParareal, we address the problem of not being able to solve

nonlinear systems of ODEs by using the existing architecture of Parareal and tackle

the issue of how to correctly and efficiently choose the M initial values by using the

probability distributions described in the previous section.

The idea of sampling the M initial values from probability distributions stems

from the sampling-based ODE solvers (also known as perturbative ODE solvers)

developed in the field of PN. Conrad et al. (2017) developed a (sequential) sampling-

based ODE solver in which solution states generated by a numerical integrator (such

as F∆T ) are perturbed with Gaussian noise to try to quantify numerical uncertainty

in the solution to the ODE. Traditionally, one integrates (2.1) forward in time

by applying F∆T sequentially, just as in (2.3). In sampling-based solvers, F∆T is

assumed to be a one-step numerical method, i.e. δt = ∆T , with local truncation

1In his conclusions, Nievergelt summed this up best himself by saying that: “The integration
methods introduced in this paper are to be regarded as tentative examples of a much wider class of
numerical procedures in which parallelism is introduced at the expense of redundancy of computation.
As such, their merits lie not so much in their usefulness as numerical algorithms as in their potential
as prototypes of better methods based on the same principles. It is believed that more general
and improved versions of these methods will be of great importance when computers capable of
executing many computations in parallel become available.”
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Figure 3.2: An illustration of the sampling-based ODE solver proposed by Conrad
et al. (2017). The deterministic solution trajectory (black line) obtained using F∆T is
shown alongside one realisation of the sampling-based trajectory (blue lines) obtained
using (3.2).

error of order q + 1 (q > 1). This means that Un = F∆T (Un−1) is accurate with

respect to the true solution u(tn) up to O(∆T q). Conrad et al. exploit the fact that

we are free to select any point within the small “ball” centred on Un, radius C∆T q+1

(C constant) to propagate forward in time to tn+1. They do this by adding zero-

mean, suitably scaled (second moment scaled O(∆T 2q+1)), independent identically

distributed (i.i.d.) Gaussian perturbations ξn after each propagation using F∆T ,

proposing the numerical scheme

Ûn+1 = F∆T (Ûn) + ξn, n = 0, . . . , N − 1. (3.2)

The idea is that an approximation to the numerical error, i.e. ξn, is added to the

numerical solution after each time step, thus generating a sequence of random variables

that captures numerical uncertainty in the solution—see Figure 3.2. Upon multiple

simulations of the algorithm, one then obtains a non-Gaussian distribution of solutions

rather than a single deterministic trajectory—recall Figure 1.4(a). Whilst this

distribution is unstructured and analytically intractable to analyse post-simulation

(at present), it does have the power to reveal qualitative features of the system being

solved, e.g. stable or unstable manifolds, that “uncertainty-unaware” deterministic

solvers cannot. Although we do not directly use random perturbations in SParareal

to quantify numerical uncertainty2, we do use them to explore the solution space

and try to accelerate convergence of the deterministic Parareal scheme.

The key takeaway from the work of Conrad et al. (2017) is that the mean-

square error of the solutions (3.2) are accurate with respect to the global truncation

2In Section 3.3 we will, however, see that upon multiple simulations of SParareal, one can
obtain a distribution of solutions to the IVP. We do not claim that such a distribution captures any
quantitative numerical uncertainty from the solvers but rather it can provide a more qualitative
understanding of how solutions to the IVP behave.
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error of F∆T (assuming perturbations have an appropriate bound on their second

moments). This means that the solutions (3.2) are of the same order of accuracy as

those obtained deterministically using (2.3). Note that the stochastic trajectories

illustrated in Figure 3.2 were purposely drawn far away from the deterministic

trajectory to emphasise their stochastic nature only. This will be a feature that

SParareal mimics with respect to the solutions from Parareal (i.e. they will be of

the same order of accuracy). In follow up work, Lie et al. (2019, 2022) extend the

theoretical analysis of the solution errors to allow for more general, e.g. non Gaussian,

non centred, non i.i.d., perturbations. The underlying assumptions made about the

perturbations by Lie et al. will be very useful when we derive mean-square error

bounds for the SParareal solutions in Chapter 4. One downside of these solvers is

that if F∆T is a solver that preserves some geometric property of the IVP being

solved, e.g. energy, then the random perturbations don’t preserve these properties. In

response to this problem, Abdulle and Garegnani (2020) developed a sampling-based

solver in which they randomise the time steps rather than the solutions to preserve

such geometric properties—it would be interesting to see if this is compatible with

PinT methods. For an extended discussion on sampling-based ODE solvers refer to

Hennig et al. (2022).

Finally, for completeness we must note the Parareal variants that have been

developed to solve SDEs, with applications mainly focused on molecular dynamics

(Baffico et al., 2002; Bal, 2006; Engblom, 2009; Legoll et al., 2020, 2022). These

variants typically use a fine SDE solver to integrate the SDE to high resolution and

a coarse solver that uses either a larger time step (which is often difficult to do in

molecular dynamics simulations) or solves reduced (deterministic) model equations.

Either way, the Parareal scheme requires some form of adaptation so that these

solutions can be combined in a PC-type scheme. When applying such variants to

SDEs, the solutions obtained are inherently stochastic due to the nature of the SDE

and, to an extent, the solvers. With SParareal, the IVP is strictly deterministic and

the SParareal scheme itself is what introduces randomness that generates stochastic

solutions to the (deterministic) IVP. One would need to think carefully about how

to apply SParareal to SDEs.

3.2 The algorithm

We are now ready to introduce SParareal and explain how it works.

3.2.1 How it works

Following initialisation, the first iteration (k = 1) of SParareal is the same as the first

in Parareal—refer to pseudocode in Algorithm 2. This is because the coarse and fine

solution information generated up to k = 1 is required to construct the probability
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distributions for sampling. After the convergence check, we assume (for the purposes

of explaining the stochastic iterations) that only the first time slice [t0, t1] converges

during k = 1, leaving N − 1 unconverged time slices. At this point we know the most

up-to-date PC solutions U1
n ∀n ∈ {1, . . . , N} and the stochastic iterations can begin

(henceforth k = 2).

At any unconverged tn (n > 1), we sample M vectors of initial values, denoted

αk−1
n,m for m = 1, . . . ,M . The first sample is fixed as the PC solution state Uk−1

n ,

to ensure that SParareal and Parareal are equivalent when M = 1. The other

M − 1 initial values are sampled from a pre-specified d-dimensional probability

distribution Φk−1
n with finite marginal means µk−1

n = (µk−1
n1

, . . . , µk−1
nd

)ᵀ, marginal

standard deviations σk−1
n = (σk−1

n1
, . . . , σk−1

nd
)ᵀ, and correlation structure given by

the matrix Rk−1
n ∈ Rd×d. These quantities depend upon the solution information

available up to iteration k − 1, i.e. a combination of Uk−1
n , F∆T (Uk−1

n ), G∆T (Uk−1
n )

and G∆T (Uk−2
n ), see Section 3.2.2. The correlation matrix Rk−1

n is introduced to

take into account any dependence between components of the ODE system (lines 2-7,

Algorithm 2). For example, in spatially discretised PDE problems, a system of ODEs

govern the dynamics at the spatial locations and so one would expect that solutions

of ODEs “next to one another” would be highly correlated and those “further away”

would be less correlated. The elements of Rk−1
n , for k > 3, are defined using the

Pearson correlation coefficient

ρk−1
ni,j =

∑M
m=1(x

(i)
m − x̄(i))(x

(j)
m − x̄(j))√∑M

m=1(x
(i)
m − x̄(i))2

√∑M
m=1(x

(j)
m − x̄(j))2

, i, j ∈ {1, . . . , d}, (3.3)

where

x(i)
m = F∆T (αk−2

n−1,m)(i), x̄(i) =
1

M

M∑
m=1

x(i)
m ,

and F∆T (αk−2
n−1,m)(i) denotes the ith element of F∆T (αk−2

n−1,m). The coefficients ρk−1
ni,j

in (3.3) are the estimated pairwise correlation coefficients of the M d-dimensional fine

resolution propagations of the sampled initial values at tn from the previous iteration,

i.e. F∆T (αk−2
n−1,1), . . . ,F∆T (αk−2

n−1,M ). Note that other types of linear correlation

coefficient can be chosen. Since each F∆T (αk−2
n−1,m) is not available at iteration k = 2,

we set Rk−1
n = Id for k = 2, i.e. we sample from a multivariate distribution with

uncorrelated components.

Following this, the sampling and subsequent propagation using F∆T can begin in

parallel (lines 8-19). Given the solution between [t0, t1] has converged, F∆T will run

from the converged initial value at t1, with sampling starting from t2 onward (see

Figure 3.3). All sampled initial values are then propagated forward in parallel using

F∆T , requiring at least M(N − 2) + 1 processors (M samples on N − 2 unconverged
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Algorithm 2: SParareal

Initialise: Run Parareal (Algorithm 1) until the end of iteration k = 1.
1 for k = 2 to N do

%Calculate correlations if d > 1, recall (3.3).

2 Rk−1
n = Id ∀n;

3 if k > 3 then
4 for n = I + 1 to N − 1 do

5 Calculate Rk−1
n using F∆T (αk−2

n−1,1), . . . ,F∆T (αk−2
n−1,M );

6 end

7 end
%Sampling and propagation. Lines 8-10 must run in parallel

on P1, . . . , PM(N−1−I)+1.

8 Ũk−1
I+1 = F∆T (Uk−1

I ) ; %propagate converged value at tI on P1

9 for n = I + 1 to N − 1 do
10 for m = 1 to M do
11 if m = 1 then

12 αk−1
n,1 = Uk−1

n ; %first ‘sample’ is fixed to PC value

13 Ũn+1,1 = F∆T (αk−1
n,1 ) ; %store propagated values

14 else
15 αk−1

n,m ∼ Φk−1
n ; %sample initial value randomly

16 Ũn+1,m = F∆T (αk−1
n,m);

17 end

18 end

19 end
%Sequentially select most continuous fine trajectory.

20 for n = I + 1 to N − 1 do

21 J = argmin
j∈{1,...,M}

‖αk−1
n,j − Ũk−1

n ‖2;

22 α̂k−1
n = αk−1

n,J ; %store optimal initial value

23 Ũk−1
n+1 = Ũn+1,J ; %store most optimal fine trajectories

24 end
%Run G∆T from the optimal samples (can run in parallel).

25 for n = I + 1 to N − 1 do

26 Ûk−1
n+1 = G∆T (α̂k−1

n );
27 end

%Predict and correct the initial values.

28 for n = I + 1 to N do

29 Ûk
n = G∆T (Uk

n−1);

30 Uk
n = Ûk

n + Ũk−1
n − Ûk−1

n ;

31 end
%Check whether the stopping criterion is met.

32 I = max
n∈{I+1,...,N}

‖Uk
i −U

k−1
i ‖∞ < ε ∀i < n;

33 if I = N then
34 return k, Uk

· ; %if tolerance met for all time steps, stop.

35 end

36 end
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Figure 3.3: An illustration of the sampling and propagation process within SParareal
following iteration k = 1. The fine solution is given in black, the k = 0 fine solutions
in blue, the k = 1 coarse solutions in red, and the k = 1 PC solutions as red dots.
With M = 5, four samples α1

n,m (green dots) are taken at t2 and t3 from distributions
with means U1

2 and U1
3 , and some finite standard deviations respectively. These values,

along with U1
2 and U1

3 themselves, are propagated in parallel forward in time using F∆T

(green lines). The optimally chosen samples α̂1
n (refer to text for how these are chosen)

are then propagated forward in time using G∆T (yellow lines).

time slices plus running F∆T once in [t1, t2]).

Of the M sampled initial values at each tn (n > 1), only one is retained (denoted

by α̂k−1
n ) chosen such that it minimises the Euclidean distance between the fine

solution and the sampled values (lines 20-24). To do this, start from the converged

initial values at t2 given by the fine solver: F∆T (Uk−1
1 ). Calculate the Euclidean

distance between F∆T (Uk−1
1 ) and each of the M samples αk−1

2,1 , . . . ,α
k−1
2,M . The

sample minimising this distance is chosen as α̂k−1
2 . Repeat for later tn, minimising

the distance between F∆T (α̂k−1
n−1) and one of the samples αk−1

n,1 , . . . ,α
k−1
n,M . This

process must be run sequentially and relies on the modification to Parareal discussed

at the end of Section 2.2.2—that solutions are not altered once converged. Referring

again to Figure 3.3, the corresponding coarse trajectories of these optimally chosen

samples α̂k−1
n must also be calculated to carry out the PC step (lines 25-27).

At this point, the set of initial values {α̂k−1
2 , . . . , α̂k−1

N−1} has been selected from

the ensemble of random samples, effectively replacing the previously found Uk−1
n .

The coarse and fine propagations of these values are now used in the PC (lines 28-31)

such that

Uk
n = G∆T (Uk

n−1) + F∆T (α̂k−1
n−1)− G∆T (α̂k−1

n−1), 2 6 k 6 n 6 N. (3.4)

Note that α̂k−1
n−1 = Uk−1

n−1 for n = k, as no sampling takes place in the left-most

(already converged) time slice. Using the same stopping criteria (2.10) from Parareal

(lines 32-35), the algorithm either stops or runs another SParareal iteration. For

completeness, we define the SParareal scheme as we did for Parareal:
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Definition 3.1 (SParareal). For the two numerical flow maps F∆T and G∆T , de-

scribed in Section 2.2, the SParareal scheme is given by

U0
0 = u0, (3.5a)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (3.5b)

U1
n+1 = G∆T (U1

n) + F∆T (U0
n)− G∆T (U0

n), 0 6 n 6 N − 1, (3.5c)

Uk+1
n+1 = G∆T (Uk+1

n ) + F∆T (α̂kn)− G∆T (α̂kn), 1 6 k 6 n 6 N − 1, (3.5d)

where α̂kn = Uk
n when n = k.

As a final remark, instead of minimising the distance between F∆T (α̂k−1
n−1) and one

of the samples αk−1
n,1 , . . . ,α

k−1
n,M , one could think about doing some sort of interpolation

(recall the work of Nievergelt (1964)) to choose a more optimal point “between” the

M samples. This, however, is not possible in the Parareal setting because we require

not just the exact starting condition, which would be the optimally chosen sample,

but also its value having been propagated by F∆T (which we only have for the M

samples).

3.2.2 Sampling rules

The probability distributions Φk−1
n incorporate different combinations of available

solution information, i.e. the coarse, fine, and PC solution values G∆T (Uk−1
n−1),

G∆T (Uk−2
n−1), F∆T (Uk−2

n−1), and Uk−1
n , respectively. This information is used to define

the marginal means and standard deviations in the following “sampling rules”. Using

Gaussian and copula distributions, we analyse the numerical performance of different

sampling rules within SParareal in Section 3.3. This will give us a more comprehensive

understanding of whether the choice of distribution family Φk−1
n or the parameters

µk−1
n , σk−1

n , and Rk−1
n have the greatest impact on the number of iterations until

convergence.

Multivariate Gaussian

First, we consider perturbing the solution states using Gaussian “noise”, i.e. con-

sidering errors compared to the exact solution states to be normally distributed, a

standard method for modelling uncertainty—similar assumptions were made in the

work of Conrad et al. (2017). The Gaussian probability density function over Rd is

given by

N (x;µ,Σ) =
1

(2π)d/2 det Σ1/2
exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
, x ∈ Rd. (3.6)

The parameters µ ∈ Rd and Σ ∈ Rd×d are the mean vector and the (symmetric

positive semi-definite) covariance matrix, respectively. A real-valued random X
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(a) (b)

Figure 3.4: Illustration of 5000 samples taken from two different bivariate Gaussian
distributions X = (x1, x2)ᵀ ∼ N (µ,Σ). (a) Uncorrelated samples: µ = (0, 0)ᵀ and
Σ = [0.625, 0; 0, 0.625]. (b) Positively correlated samples: µ = (0, 0)ᵀ and Σ =
[0.625, 0.594; 0.594, 0.625]. The histograms depict the marginal distributions of X, i.e.
samples are approximately distributed as x1 ∼ N (0, 0.625) and x2 ∼ N (0, 0.625) in
both cases.

is said to be Gaussian (normally) distributed if X ∼ N (µ,Σ). An illustration

of samples taken from two bivariate (d = 2) Gaussian distributions with different

covariance matrices is given in Figure 3.4. Recall that the marginal distributions of

a multivariate Gaussian are also Gaussian.

The values αk−1
n,m are sampled from N (µk−1

n ,Σk−1
n ) with marginal means denoted

µk−1
n = (µk−1

n1
, . . . , µk−1

nd
)ᵀ and covariance matrix (Σk−1

n )i,j = ρk−1
ni,j σ

k−1
ni σk−1

nj . For the

mean vector µk−1
n , we choose either the fine solution states F∆T (Uk−2

n−1) (prior to

correction) or the PC states Uk−1
n . For the marginal standard deviations3, we choose

σk−1
n = |G∆T (Uk−1

n−1)− G∆T (Uk−2
n−1)| as they are of the order of the corrections made

by the PC and each marginal decreases toward zero as the algorithm converges—the

importance of this property will be highlighted in Chapter 4. For the correlation

coefficients, ρk−1
ni,j , we calculate the linear correlation between the F∆T propagated

samples using Pearson’s method—recall (3.3). The samples αk−1
n,m ∼ N (µk−1

n ,Σk−1
n )

are taken according to the following sampling rules:

Rule 1 : µk−1
n = F∆T (Uk−2

n−1) and σk−1
n = |G∆T (Uk−1

n−1)− G∆T (Uk−2
n−1)|.

Rule 2 : µk−1
n = Uk−1

n and σk−1
n = |G∆T (Uk−1

n−1)− G∆T (Uk−2
n−1)|.

3Testing revealed that alternative marginal standard deviations |Uk−1
n −Uk−2

n | and |F∆T (Uk−2
n−1)−

G∆T (Uk−2
n−1)| did not span sufficiently large distances around µk−1

n in order for sampling to be efficient,

i.e they required much higher sampling to perform as well as σk−1
n = |G∆T (Uk−1

n−1)− G∆T (Uk−2
n−1)|

(results not shown). Also, note that | · | denotes the component-wise absolute value.
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(a) (b)

Figure 3.5: Illustration of 5000 samples taken from two different bivariate t-copula
distributions X = (x1, x2)ᵀ ∼ Ct with ν = 1. (a) Uncorrelated samples: R = [1, 0; 0, 1].
(b) Correlated samples: R = [1, 0.95; 0.95, 1]. The histograms depict the marginal
distributions of X, i.e. samples are approximately distributed as x1 ∼ U(0, 1) and
x2 ∼ U(0, 1) in both cases.

Note that a linear combination of both rules (or taking half the samples from each)

also works well, with performance similar to the individual rules themselves (results

not shown).

Multivariate copula

Now we wish to consider the case where samples are drawn from a multivariate

uniform distribution, allowing us to compare the performance of using perturbations

with (uniform) and without (Gaussian) closed support. The multivariate uniform

distribution, however, does not contain a dependency structure, i.e. random samples

are assumed to be uncorrelated. To be able to include such a dependency structure,

we consider using copulas.

A copula C : [0, 1]d → [0, 1] is a joint cumulative distribution function with

uniform marginal distributions (Nelsen, 2006). Sklar’s theorem states that any

multivariate cumulative distribution function with continuous marginal distributions

can be written in terms of d uniform marginal distributions and a copula that

describes the correlation structure between them (Sklar, 1959). This will allow

us to sample from a multivariate distribution with uniform marginal distributions

and a given correlation structure (that we can turn on and off). We will build

these copulas in such a way that they have the same marginal means and standard

deviations as sampling rules 1 and 2. While there are numerous families of copula to

choose from, we consider the symmetric t-copula Ct that underlies the multivariate
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t-distribution. It depends on a parameter ν (representing the degrees of freedom)

and the correlation matrix R which will encode the dependency structure (this will

be Rk−1
n in SParareal). In Figure 3.5 we plot samples from two bivariate (d = 2)

t-copulas with parameter ν = 1 and different correlation matrices—we use this value

of ν in our experiments. One can see that the effect of ν = 1 means samples have a

higher probability of being drawn toward the edges of the box [0, 1]2, i.e. the “tails”

of the distribution, than a Gaussian distribution in both cases. In addition, notice

how the marginal distributions are both uniformly distributed. If we were to send

ν → ∞, we would obtain the Gaussian copula that has uniform marginals and a

Gaussian dependency structure—see Nelsen (2006) for more details on copulas.

To compare with sampling rules 1 and 2, the correlated samples X ∼ Ct generated

in [0, 1]d need to be re-scaled such that each marginal is uniformly distributed in an

interval [ai, bi] ⊂ R, with mean µi and standard deviation σi for i ∈ {1, . . . , d}. By

definition, a marginal uniform distribution on [ai, bi] has mean (ai+bi)/2 and variance

(bi − ai)2/12 which we set equal to µi and σ2
i , respectively. Solving these equations,

we find that the desired marginals are uniform distributions on [µi−
√

3σi, µi+
√

3σi].

Therefore, scaling by 2
√

3σiXi + µi −
√

3σi guarantees that the generated samples

X ∼ Ct have the same marginal means µi and standard deviations σi as the Gaussian

sampling rules. This will allow us to compare the performance of both distribution

families in Section 3.3. The t-copula sampling rules (Rules 3 and 4) are therefore

defined component-wise as αk−1
n,m(i) = 2

√
3σiXi + µi −

√
3σi, for i ∈ {1, . . . , d}, with

X ∼ Ct and parameters µi and σi chosen to be identical to Rule 1 and Rule 2,

respectively.

3.2.3 Computational complexity

During each iteration, SParareal uses the fine solver more frequently than Parareal,

albeit still in parallel, and therefore requires a larger number of processors. The first

iteration of SParareal requires N processors, however, once sampling begins (k > 2),

it requires at most M(N − I − 1) + 1 processors—assuming I time slices converge

during k = 1. This number scales directly with M and so sampling may be limited if

a small number of processors are available.

As the stochastic iterations progress, the number of processors required, i.e.

M(N − I − 1) + 1, decreases as the number of converged time slices I increases.

Each additional time slice that converges leaves M processors idle meaning that we

can re-assign them to do additional sampling and propagation. We assign each set

of M idle processors to the earliest unconverged time slice with the least number

of samples, ensuring all processors are working at all times to explore the solution

space for the exact solution states (see Figure 3.6 for an illustration). We do not

explicitly write the pseudocode for re-assigning the idle processors in Algorithm 2 to

avoid additional complexity—the process is, however, implemented in the numerical
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Figure 3.6: Illustration of a possible processor configuration if two time slices were
to converge between iterations two and three of SParareal. The letter C denotes a
converged time slice, the number 1 denotes a time slice where we propagate the converged
initial value from the preceding time slice using F∆T , and the letter M denotes the
number of samples taken in an unconverged time slice.

experiments in Section 3.3 4.

As we did with Parareal, we can estimate the wallclock time, speedup, and

parallel efficiency of SParareal—refer back to Section 2.2.3 for notation. Assuming

that the additional serial costs in SParareal, e.g. correlation estimation and selecting

optimal samples, take negligible wallclock time compared to TF , we can estimate the

total wallclock time for SParareal as

TSPara ≈ NTG︸︷︷︸
Iteration 0

+TF + (N − 1)TG︸ ︷︷ ︸
Iteration 1

+
k∑
i=2

(
TF + 2(N − i)TG

)︸ ︷︷ ︸
Iterations 2 to k

= kTF +
(
2kN − k(k + 1) + 1

)
TG . (3.7)

Note that the summation term includes the additional cost of running G∆T for the

optimal samples (as well as the runs of G∆T carried out in the PC step). The parallel

speedup of SParareal can then be written as

SSPara ≈
Tserial

TSPara
=

[
k

N
+

(
2k − k

N
(k + 1) +

1

N

)
TG
TF

]−1

, (3.8)

and the parallel efficiency as

ESPara ≈
SSPara

NM
=

1

M

[
k + (2kN − k(k + 1) + 1)

TG
TF

]−1

. (3.9)

Assuming the ratio TG/TF is negligible, we expect that iterations in SParareal and

Parareal will have very similar runtimes. Therefore, if SParareal converges in fewer

iterations than Parareal, the wallclock time for SParareal will be lower than for

Parareal (as we will see in Section 3.3). This does, however, come at a cost of

requiring O(MN) processors rather than N to solve the IVP, which in turn degrades

the parallel efficiency (3.9) of the algorithm quite significantly. Although, it should

4To increase efficiency further we also attempted to store previously sampled and propagated fine
trajectories to use in future iterations of the algorithm, however, they did not improve performance.
This was because only the most recently obtained samples were ever chosen in each iteration (results
not shown).
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be highlighted that if SParareal converges in even one less iteration than Parareal,

we avoid an extra run of F∆T which will save at least TF seconds of wallclock time.

3.2.4 Convergence

It should be clear that given the stochastic nature of SParareal, it will return a

numerical solution Uk
n which varies stochastically between independent simulations

of the algorithm. Given the inherent randomness encoded in the numerical solutions,

we can discuss the convergence of SParareal in two ways.

Firstly, we consider convergence in terms of minimising ks, the number of iterations

taken for SParareal to converge (noting that this is a random variable). We can do

this by studying P(ks < k), the probability of SParareal converging in fewer iterations

than Parareal. Proving that P(ks < k) = 1, or at least E(ks) =
∑N

i=1 iP(ks = i) < k,

will be challenging given that there are no analytical results for Parareal guaranteeing

that k < N for any given problem. We can , however, qualitatively discuss P(ks < k)

and E(ks) with respect to the number of samples M . Consider the following cases:

(i) M = 1

Running SParareal is equivalent to running Parareal, hence the convergence of

SParareal follows from that of Parareal and therefore E(ks) = ks = k.

(ii) 1 < M <∞
When using finitely many samples, we compute the discrete probability distri-

butions P(ks = k) and observe, in all numerical experiments (see Section 3.3),

that P(ks < k)→ 1 as M increases. Moreover, we observe E(ks) decreases for

increasing M , with E(ks) < k for all values of M tested.

(iii) M →∞
If we were able to take infinitely many samples, SParareal effectively samples

every possible value in the support of Φ, i.e. every solution state that has a

non-zero probability of being sampled from Φ. Therefore, if Φ has infinite

support, e.g. the Gaussian distribution, all possible solution states in Rd are

sampled and propagated, hence the fine solution will be recovered almost

surely in E(ks) = 2 iterations. Note this is the smallest value ks can take to

converge assuming convergence does not occur following the first iteration. In

Section 3.3.1, we try to illustrate this property numerically by taking a large

number of samples for a single realisation of SParareal.

In the scenario that SParareal converges in ks = N iterations (irrespective of the

value of M), it will return the fine solution just as Parareal does when k = N (having

propagated the exact initial value at t0 sequentially N times using F∆T ).

Secondly, we can consider convergence in terms of the stochastic solution states

Uk
n (3.4) approaching (in the mean-square sense) the exact solution states Un as
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k increases. Deriving rigorous mean-square error bounds for SParareal, however,

requires a lot of set up and so we postpone this analysis until Chapter 4. There we will

give a full exposition of the convergence of SParareal, deriving explicit mean-square

errors bounds under a number of different assumptions on the solvers and for the

sampling rules. In the numerical experiments in Section 3.3, we do not observe a

case where SParareal fails to converge to the exact solution. In fact, we observe

tight confidence intervals on the numerical errors between Uk
n and Un upon multiple

realisations of SParareal (see Figure 3.10 and Figure 3.14). The only situation in

which SParareal may fail to converge (i.e. solutions blow up) is in cases in which

Parareal also fails—typically this means that a more accurate coarse solver is required

for both algorithms.

3.3 Numerical experiments: nonlinear ODEs

In this section, we compare the numerical performance of Parareal and SParareal on

nonlinear ODE systems of increasing complexity. We fix F∆T = G∆T = RK4 for all

experiments and let NF and NG denote the number of time steps each solver uses over

[t0, T ], respectively. Due to the stochastic nature of solutions from SParareal, we will

quantify performance by estimating the distributions of ks for each sampling rule over

a number of independent simulations, comparing these results to the deterministic

value k obtained by Parareal. We will also measure the accuracy of the stochastic

solutions against those obtained serially with F∆T . At the time of writing only a

limited number of processors were available for these experiments, hence the majority

of the results in this section are based not on calculating wallclock runtimes but on

comparing the iteration counts k and ks—which are independent of the number of

processors used5. Additional results for two further test problems can be found in

Appendix C.

3.3.1 Scalar nonlinear equation

First, we consider the nonlinear nonautonomous scalar ODE

du

dt
= sin(u) cos(u)− 2u+ e−t/100 sin(5t) + ln(1 + t) cos(t), (3.10)

with initial value u(0) = 1 (Chartier and Philippe, 1993). We discretise the time

interval t ∈ [0, 100] using N = 40 time slices and NG = 100 coarse and NF = 8000

fine time steps, respectively. Numerical solutions to (3.10) are shown on the interval

[0, 18] in Figure 3.7(a) where (deterministically) Parareal locates a solution in k = 25

5We obtained access to a larger number of processors following the publication of this work
and so we have retrospectively run some experiments to examine the wallclock time and speedup
generated by SParareal in Section 3.3.1.
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(a) (b)

Figure 3.7: (a) Numerical solution of (3.10) over [0, 18] using F∆T serially (back), a
single realisation of SParareal (blue), and Parareal (red). Note that only a subset of
the fine times steps of the SParareal and Parareal solutions are shown for clarity. (b)
Errors at successive iterations of Parareal (red line) and ten independent realisations of
SParareal (blue lines). Horizontal dashed black line represents the stopping tolerance
ε = 10−10. Note that both panels use SParareal with sampling rule 1 and M = 3.

iterations using error tolerance ε = 10−10. SParareal converges in a varying number

of iterations ks, with P(ks < k) = 1, see Figure 3.7(b) for the convergence of ten

independent simulations using M = 3. From this plot, we can see that by taking

just three samples, SParareal reduces the number of iterations by almost a factor

of two—from 25 to approximately 13 or 14. In Figure 3.8, we can see how this

directly translates to increased speedup6, where we observe SParareal locating a

solution between 2.25–3× faster (than the serial F∆T solver) and Parareal only 1.4×
faster. Also shown are the speedup results when taking two or four samples and the

corresponding theoretical bounds on speedup derived in Section 3.2.3. These results

highlight that speedup continually increases as more samples are taken, at a cost of

using significantly more processors (which is detrimental to the parallel efficiency of

the algorithm).

We know that for M > 1, SParareal generates stochastic solutions that converge

in a varying number of iterations ks. In order to accurately compare k with the

discrete random variable ks, we run 2000 independent simulations of SParareal to

estimate the distribution of ks for a given M . Upon estimating these distributions,

it was found that P(ks < 25) = 1 for each of the four sampling rules (for all M > 1),

meaning that we can beat Parareal with probability one. The estimated distributions

of ks, using sampling rule 1 (the other rules perform similarly), as a function of M are

given in Figure 3.9(a). The stacked bars represent the estimated discrete probability

of a simulation converging in a given number of iterations. The results show SParareal

6Note that to generate the speedup results, NF was increased by a factor of 104 so that the
ratio TG/TF was sufficiently small as to return meaningful speedup results.
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Figure 3.8: Speedup against iterations k, obtained when solving (3.10). Experiments
(with sampling rule 1) are run over 50 independent simulations showing mean speedup
with M = 2 (blue), M = 3 (purple), and M = 4 (brown) samples. Speedup for Parareal
is also shown (red circle), calculated by averaging over 10 independent simulations.
Corresponding theoretical results (red star and solid black line) were calculated using
(2.12) and (3.8) for Parareal and SParareal, respectively.

converging in just five iterations in the best case—demonstrating SParareal has the

potential to yield significant parallel speedup, although this would require O(103)

processors to achieve! Clearly using this many processors to achieve (up to) 8×
speedup would be overkill for such a simple IVP but it demonstrates that SParareal

works as expected. Figure 3.9(b) emphasises the power of the stochastic method,

showing that the estimated expected value E(ks) decreases as M increases, with the

estimated standard deviation sd(ks) =
√∑N

k=1(k − E(ks))2P(ks = k) decreasing too.

(a) (b)

Figure 3.9: (a) Estimated discrete distributions of ks as a function of M for sampling
rule 1. (b) Estimated expectation of ks as a function of M , calculated using estimated
distributions of ks for each sampling rule with error bars representing ± two standard
deviations sd(ks). Distributions in both panels are estimated by simulating 2000
independent realisations of SParareal for each M .
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Figure 3.10: Errors of Parareal (red) and mean SParareal (black) solutions against the
serial F∆T solution over time. The mean error is obtained by running 2000 independent
realisations of SParareal with sampling rule 2 and M = 4—the confidence interval
representing the mean ± two standard deviations is shown in light blue.

The improved performance of SParareal as M increases reflects what was discussed in

Section 3.2.4. We also ran a single realisation of SParareal with M = 106, observing

that SParareal converged in four iterations (result not shown), confirming that ks

continues to decrease for increasing M . By looking at Figure 3.9(b), we see that

sampling rule 1 yields the lowest expected values of ks for small values of M , with

all sampling rules performing similarly for large M .

To verify the accuracy of the stochastic solutions, we plot the difference between

the mean of 2000 independent realisations of SParareal and the serially calculated

F∆T solution in Figure 3.10. Also shown is the confidence interval given by two

standard deviations of the stochastic solutions (which is at most O(10−11)) and

the error generated by Parareal. Accuracy is maintained with respect to the fine

solution across the time interval, even more so than the Parareal solution. See

Appendix C.1 for numerical results of SParareal applied to a stiff scalar nonlinear

ODE. In that case, the stiffness of the equation demands a higher value of M to

improve ks—something we observe for the Brusselator in the next section.

3.3.2 The Brusselator system

Next, consider the Brusselator system

du1

dt
= A+ u2

1u2 − (B + 1)u1, (3.11a)

du2

dt
= Bu1 − u2

1u2, (3.11b)

a pair of stiff nonlinear ODEs that model an auto-catalytic chemical reaction (Lefever

and Nicolis, 1971). Using parameters (A,B) = (1, 3), trajectories of the system
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exhibit oscillatory behaviour in phase space, approaching a limit cycle (as t→∞)

that contains the unstable fixed point (1, 3)ᵀ. Now that d > 1, we use bivariate

distributions to sample the initial values—meaning we can compare the effects of

including or excluding the correlations between variables. System (3.11) is solved

using initial value u(0) = (1, 3.07)ᵀ over time interval t ∈ [0, 15.3] with N = 25,

NG = 25, and NF = 2500 (Trefethen et al., 2017). In Figure 3.11(a), we plot

numerical solutions to system (3.11) in the phase plane and the errors at successive

iterations of ten SParareal simulations in Figure 3.11(b). With these parameters

and a tolerance of ε = 10−6, Parareal takes k = 7 iterations to stop and return a

numerical solution whilst SParareal takes ks = 6.

The estimated distributions of ks for sampling rule 1 are given in Figure 3.12(a).

Even though Parareal takes just k = 7 iterations to stop, we observe that SParareal

can still reach the desired tolerance in 5 or 6 iterations—albeit requiring larger values

of M . We believe this is due to the stiffness of the system and poor accuracy of

the G∆T solver—results presented for the stiff ODE in Appendix C.1 appear to

confirm this. The solid lines in Figure 3.12(b) show that, using sampling rules 1 or 3,

SParareal only requires M ≈ 10 to beat Parareal almost certainly, i.e. to guarantee

that P(ks < 7)→ 1. Sampling rules 1 and 3 outperform 2 and 4 in this particular

system. Note, however, the stark decrease in performance if instead uncorrelated

samples are generated within SParareal (dashed lines). This demonstrates the

importance of accounting for the dependence between variables in nonlinear systems

such as (3.11). In Figure 3.13 we report the expected value of ks as a function

of M for each of the sampling rules. These results further suggest (in addition to

(a) (b)

Figure 3.11: (a) Numerical solution of system (3.11) in the phase plane using F∆T

(black), Parareal (red), and SParareal (blue). Note that solutions from Parareal and
SParareal are shown at times t for clarity. (b) Errors at successive iterations of Parareal
(red line) and ten independent realisations of SParareal (blue lines). Horizontal dashed
black line represents the tolerance ε = 10−6. Both panels run SParareal with sampling
rule 1 and M = 10.
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(a) (b)

Figure 3.12: (a) Estimated discrete probabilities of ks as a function of M for sampling
rule 1. (b) Estimated probability that the convergence rate ks is smaller than k = 7
as a function of M for the sampling rules with (solid lines) and without (dashed lines)
correlations. Distributions were estimated by simulating 2000 independent realisations
of SParareal for each M .

Figure 3.12(a)) that larger values of M are required to reduce E(ks) even further

for this stiff system. Observe, in Figure 3.14, how the mean SParareal solutions still

maintain equivalent or better accuracy than the Parareal solutions, with standard

deviations at most O(10−6).

In Appendix C.2, we apply SParareal to a non-stiff two-dimensional nonlinear

system and observe that less sampling is required to accelerate convergence compared

to the Brusselator system.

Figure 3.13: Estimated expectation of ks as a function of M , calculated using estimated
distributions of ks for each sampling rule with error bars representing ± two standard
deviations sd(ks) shown for correlated (solid lines) sampling rules. Uncorrelated sampling
rules are shown with dashed lines without error bars. Distributions are estimated by
simulating 2000 independent realisations of SParareal for each M .
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(a) (b)

Figure 3.14: Errors of Parareal (red) and mean SParareal (black) solutions against
the F∆T solution. The mean error is obtained by running 2000 independent realisations
of SParareal with sampling rule 4 and M = 200—the confidence interval representing
the mean ± two standard deviations is shown in light blue. Panel (a) displays errors for
the u1 component of the solution whilst (b) displays the u2 component.

3.3.3 The Lorenz63 system

Finally, we consider the Lorenz63 system

du1

dt
= γ1(u2 − u1), (3.12a)

du2

dt
= γ2u1 − u1u3 − u2, (3.12b)

du3

dt
= u1u2 − γ3u3, (3.12c)

a simplified model for weather prediction developed by Lorenz (1963). With the

parameters (γ1, γ2, γ3) = (10, 28, 8/3), (3.12) exhibits chaotic behaviour where tra-

jectories with initial values close to one another diverge exponentially. This will test

the robustness of SParareal, as small numerical differences between initial values will

mean that errors can grow rapidly as time progresses. We solve (3.12) using initial

value u(0) = (−15,−15, 20)ᵀ over the interval [0, 18], discretised using N = 50 time

slices and time steps NG = 250 and NF = 18, 750. With a tolerance of ε = 10−8,

Parareal takes k = 20 iterations to converge.

Running SParareal to compare the performance of the sampling rules, we see

again in Figure 3.15(a) that taking correlated samples is much more efficient than

not and that only M ≈ 10 samples are required to beat Parareal with probability

one. For the chaotic trajectories generated by (3.12), sampling close to the PC, rules

2 and 4, yields superior performance compared to rules 1 and 3 for small values of

M . Figure 3.15(b) displays estimated distributions for varying M using sampling

rule 2—yielding a best ks = 16 for approximately 25% of runs with M = 1000.
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(a) (b)

Figure 3.15: (a) Estimated probability that the convergence rate ks is smaller than
k = 20 as a function of M for the sampling rules with (solid lines) and without
(dashed lines) correlations. Distributions were estimated by simulating 2000 independent
realisations of SParareal for each M . (b) Estimated discrete probabilities of ks as a
function of M for sampling rule 2.

Figure 3.16 displays E(ks) against M , confirming that generating correlated samples

close to the PC solutions (sampling rules 2 and 4) yield the lowest expected values of

ks—although it takes a large number of samples to reduce the iteration count by just

a few. As before, we plot the absolute errors between the mean SParareal solution

and the fine solution for completeness—see Figure 3.17. Accuracy is again maintained

with respect to the Parareal solution, even as the errors grow with increasing time

(which is expected in a chaotic system). Keeping the errors (relatively) small is

challenging for PinT methods when solving chaotic systems and so these results

Figure 3.16: Estimated expectation of ks as a function of M , calculated using estimated
distributions of ks for each sampling rule with error bars representing ± two standard
deviations sd(ks) shown for correlated (solid lines) sampling rules. Uncorrelated sampling
rules are shown with dashed lines without error bars. Distributions are estimated by
simulating 2000 independent realisations of SParareal for each M .
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Figure 3.17: Absolute errors of Parareal (red) and mean SParareal (black) solutions
against the F∆T solution in each component: u1 (top), u2 (middle), and u3 (bottom).
The mean error is obtained by running 2000 independent realisations of SParareal with
sampling rule 2 with M = 500—the confidence interval representing the mean ± two
standard deviations is shown in light blue.

demonstrate the robustness of SParareal and that the sampling and propagation

process is not impeded by the exponential divergence of trajectories.

3.4 Discussion and further work

In this chapter, we have extended the Parareal algorithm using probabilistic methods

to develop a (sampling-based) stochastic Parareal algorithm for solving systems of

ODEs in a time-parallel manner. Instead of passing deterministically calculated

solution states into Parareal’s PC (2.9c), SParareal selects “more accurate” values

from a randomly sampled set, in each time slice, to converge in fewer iterations. In

Section 3.3, we compared performance against the deterministic Parareal algorithm

on several low-dimensional ODE systems of increasing complexity by calculating

the distributions of the iteration count (upon multiple independent realisations of

SParareal) with increasing numbers of random samples M . By taking just M ≈ 10

(correlated) samples, the estimated probability of converging sooner than Parareal

approached one in all test cases. Similarly, we observed numerical convergence toward

the fine (exact) solution with accuracy of similar order to Parareal and obtained a

distribution over the ODE solution upon multiple realisations of the algorithm.

The probability that SParareal converges faster than Parareal depends on a

number of factors: the complexity/size of the problem being solved, the number of

time time slices (N), the accuracy of the coarse integrator (G∆T ), the number of

random samples (M), and the type of sampling rule in use. Sampling rules 1 and

3 (sampling close to the fine solution states) outperformed rules 2 and 4 (sampling

close to the PC states) for the ODE systems in Section 3.3.1, Section 3.3.2, and
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Appendix C.1. The reverse was true, however, for the systems in Section 3.3.3

and Appendix C.2, making it difficult to determine an optimal rule for a general

ODE system. To overcome having to choose a particular sampling rule, one could

linearly combine different rules or even sample from multiple rules simultaneously.

We would suggest sampling from probability distributions with infinite support,

i.e. the Gaussians (rules 1 and 2), so that samples can be taken anywhere in Rd

with non-zero probability. Having finite support may have created difficulty for the

uniform marginal t-copulas (rules 3 and 4) because samples could only be taken in

a finite hyperrectangle in Rd—problematic if the exact solution state were to lay

outside of this space.

When solving stiff ODEs (see Section 3.3.2 and Appendix C.1), results indicated

that SParareal demanded increasingly high sampling to converge sooner than Parareal

than for non-stiff systems. For example, we observe that when taking M = 100

samples in the non-stiff scalar ODE in Figure 3.9, the expected number of iterations

decreases from 25 to 7 whereas for the stiff scalar ODE in Appendix C.1, the number

only drops from 8 to 6. A similar observation can be made in the two-dimensional test

cases in Section 3.3.2 (stiff) and Appendix C.2 (non-stiff). These results exemplify the

role that system complexity, e.g. stiffness or chaos, plays in the performance of both

algorithms. In Appendix C.1, SParareal was also shown to perform more efficiently

for problems that Parareal itself struggles with, i.e. cases in which the accuracy of

the coarse integrator G∆T is poor. In Appendix C.2 it was also observed that, for low

sample numbers (M = 2), SParareal actually converged in one more iteration than

Parareal in less than 2.5% of cases. This suggests there may be minimum number of

samples required to beat Parareal in some situations—something to be investigated

with further experimentation.

The curse of dimensionality also plays a stark role in the performance of SParareal.

It should be obvious that as the dimension of the system d increases, the effectiveness

of the sampling (for fixed M) will decrease. In other words, SParareal will require

exponentially increasing numbers of samples as d increases—this can be seen in

Section 3.3.3 where a large M is required to reduce ks by even a few iterations

(where d is only equal to three). This is problematic as the number of processors

scales directly with M and so for very high dimensional systems (think about PDEs

discretised with a large number of spatial points), the number of processors required

to solve in parallel (faster than Parareal) will be exceedingly large. We are unsure

how to avoid this issue but assessing performance on problems with larger d certainly

warrants further investigation.

In addition to accelerated convergence, we were able to generate a distribution

of stochastic solutions to the IVPs tested using SParareal. While the distributions

generated by such ensembles may not have an explicit mathematical interpretation

(i.e. the uncertainty does not represent numerical uncertainty generated by the fine
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or coarse solvers), the individual stochastic trajectories are indeed accurate with

respect to the fine solution. Therefore, each one can be interpreted as a solution

to the IVP and their stochastic nature is useful in that they may reveal additional

information about the system dynamics we may not see with a single deterministic

trajectory. In Chapter 4, we derive explicit error bounds for the solutions obtained

from SParareal, showing that perturbations of small enough “size” are required to

obtain accurate solutions—a condition that the sampling rules automatically satisfy.

In summary, we have demonstrated that sampling-based methods and addi-

tional processors can, for low-dimensional ODEs at least, be used to accelerate the

convergence of Parareal. There exist a few avenues for possible improvement and

generalisation. Firstly, if information is known about the behaviour of the solution

prior to simulation (e.g. if it is bounded or perhaps non-negative) then one could

construct a sampling rule to satisfy these requirements. Secondly, one could use

an alternative stopping criterion that halts SParareal when the largest standard

deviation of the distribution (in each time slice) is below ε. This would indicate that

solutions are no longer being improved significantly and so SParareal should stop,

potentially saving a costly iteration or two. In terms of the solvers F∆T and G∆T , one

could test whether the sampling-based solvers developed by Conrad et al. (2017) could

be used within Parareal—although some adaptation would be required to ensure

that perturbations are not amplified by the PC scheme, leading to non-convergence.

Finally, it would advantageous to avoid wasting the valuable information about the

system gained from the ensemble of fine propagated trajectories and see whether

it can be harnessed to extract further numerical speedup. This is something we

will explore in Chapter 5 when we develop GParareal, adopting a more Bayesian

approach to the problem by using all of the available solution data (at all iterations

and time steps) to inform the Parareal PC update.
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Chapter 4

SParareal II: error bound

analysis

Overview

Deriving rigorous error bounds for SParareal (and other PinT methods in general)

is important in demonstrating that numerical solutions obtained in parallel are

meaningful, accurate, and that they can be compared to one another (Gander et al.,

2022). In this chapter, we extend the qualitative discussion of numerical convergence

from Section 3.2.4 by making use of existing convergence analysis on Parareal (recall

Section 2.2.4) and the sampling-based ODE solver proposed by Lie et al. (2019). We

derive explicit mean-square error bounds for SParareal applied to nonlinear systems

of ODEs (over a finite time interval), using two different types of perturbation:

state-independent and state-dependent.

We begin in Section 4.1 by re-defining the SParareal scheme in such a way

that allows us to carry out our convergence analysis. The reason for this is that

definition (3.1) is very difficult to manipulate and analyse, therefore we need to

make a simplification to derive rigorous error bounds. We then recall the sampling

rules first introduced in Section 3.2.2. In Section 4.2, we outline the assumptions

on the fine and coarse integrators required to derive the error bounds. We first

consider the state-independent setting, in which the random perturbations do not

depend on solution states at any time step or iteration and are assumed to have

bounded absolute moments. In this setting, we derive our main result (Theorem 4.6),

a superlinear bound on the mean-square error that depends on both the time step

and iteration of SParareal. Using this result, we can maximise the error over time

to derive a linear error bound (Corollary 4.7). In the state-dependent setting, we

allow the perturbations to depend on solution states up to the current time step and

iteration, i.e. the known coarse and fine solution information. This will allow us to

analyse the convergence of the sampling rules proposed in Chapter 3. We derive
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linear bounds (Corollaries 4.13 and 4.14) in this setting. Following this, we verify all

of the theoretical bounds by comparing them to numerical errors generated when

solving a linear system of ODEs and a nonlinear scalar ODE in Section 4.3. We

conclude with some brief remarks on the significance of these results and discuss the

limitations which could warrant further study in Section 4.4.

Throughout this chapter, we denote variables u,v ∈ Rd as d-dimensional real-

valued vectors, the component-wise absolute value of a vector as |u| = (|u1|, . . . , |ud|)ᵀ,

and the Hadamard (component-wise) product as u ◦ v = (u1v1, . . . , udvd)
ᵀ. We let

u2 correspond to component-wise squaring, i.e. u2 = u ◦ u, and ‖u‖ the infinity (or

uniform) norm, i.e. ‖u‖ = maxi=1,...,d |ui|. The d-dimensional vector of ones and the

identity matrix will be written as 1 and Id, respectively, with non-negative constants

denoted throughout by C1, C2,. . . . In Appendix D, we provide some technical results

used to derive the aforementioned error bounds.

4.1 Re-defining SParareal

In this section, we provide an alternative (but equivalent) definition of the SParareal

scheme needed to carry out the error bound analysis in Section 4.2. Note that

throughout this chapter we will be considering autonomous IVPs, i.e. f(t,u(t)) :=

f(u(t)) in (2.1), where everything that follows should extend naturally to the

nonautonomous case.

4.1.1 The alternative scheme

The intuition behind SParareal is to perturb the solution states Uk
n in the classic

Parareal scheme, i.e. the PC (2.9c), with some additive noise to reduce the number of

iterations k taken until the stopping tolerance (2.10) is met. The original definition

(3.1) was difficult to analyse because it allowed for the taking of M random samples

and it was unclear how to bound the error of this scheme. We propose the following

alternative definition of SParareal, inspired by the form of the sampling-based ODE

solver proposed by Conrad et al. (2017), whereby only one random sample is now

taken.

Definition 4.1 (Alternative SParareal). For the two numerical flow maps F∆T and

G∆T , described in Section 2.2, the (alternative) SParareal scheme is given by

U0
0 = u0, (4.1a)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (4.1b)

U1
n+1 = G∆T (U1

n) + F∆T (U0
n)− G∆T (U0

n), 0 6 n 6 N − 1, (4.1c)

Uk+1
n+1 = G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n) + ξkn(Uk
n), 1 6 k 6 n 6 N − 1, (4.1d)
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where ξkn(Uk
n) are (possibly state-dependent) random variables. Note that ξkn(Uk

n) ≡
0 when n = k.

The first three stages of the scheme (4.1a)–(4.1c) are identical to the ‘zeroth’ and

first iteration of Parareal. The exact initial condition (4.1a) is propagated forward

in time using the coarse solver (4.1b), then there is a first pass of the PC (4.1c).

Following this, the stochastic iterations begin (4.1d), whereby a random perturbation,

i.e. a single draw from the random variable ξkn(Uk
n), is added to the PC solution.

Notice that no random perturbation is added when n = k to ensure that SParareal

returns the exact solution up to time tk after k iterations, just as Parareal does

(recall Section 2.2.3). The reason the random perturbations are only included from

iteration k > 1 onward is because ξkn(Uk
n) may depend on solution information from

iteration k − 1. Note that the Parareal scheme (2.9) can be recovered by setting

ξkn(Uk
n) ≡ 0 for n > k in (4.1d).

The scheme in (4.1) looks slightly different to the one presented in (3.5), where

random perturbations were instead incorporated via random variables (denoted by

the optimal sample α̂kn) in the correction term. The different state-dependent forms

that αkn can explicitly take are defined through the sampling rules in Section 4.1.2.

Also note that αkn = Uk
n when n = k, which is equivalent to the condition that

ξkn(Uk
n) ≡ 0 when n = k in (4.1d). The scheme defined by (3.5d) was designed so

that M > 1 samples could be drawn from each of the random variables αkn to increase

the probability of locating the exact solution state Un in fewer iterations. From the

sets of samples generated at each tn, all having been propagated in parallel using

F∆T and G∆T , those generating the most continuous F∆T trajectory across [t0, tN ]

were then chosen as the “best” perturbations α̂kn. Numerical experiments illustrated

that increasing M led to further and further reductions in k, albeit at the cost of

requiring more processors, specifically O(MN) in SParareal vs O(N) in Parareal.

To enable us to carry out the convergence analysis, we move the random per-

turbations in (3.5d) outside the correction term, and express them using ξkn(Uk
n) in

(4.1d). This new scheme is equivalent to the old scheme in the case where one sample

(M = 1) is drawn at each tn
1. The following error bounds are derived assuming one

sample is drawn from each ξkn(Uk
n)—the M sample case from Chapter 3 is much

more complex and out of the scope of the present work.

4.1.2 Sampling rules

The sampling rules presented in Section 3.2.2 describe the probability distributions

that αkn follow in the SParareal algorithm, see Table 4.1 for a summary. These

distributions were designed to vary with both iteration k and time step n, so that as

1Note that in the new scheme (4.1), M = 1 corresponds to drawing a random sample, whereas
M = 1 in the old scheme (3.5) corresponded to taking the (deterministic) PC state and simply
running Parareal.
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Table 4.1: Sampling rules that the random variables αk
n follow. The quantities

zkn ∼ N (0, Id) and wk
n ∼ U([0, 1]d) are d-dimensional Gaussian and uniform random

vectors, respectively, whilst σk
n = |G∆T (Uk

n−1)− G∆T (Uk−1
n−1)|.

Sampling rule Distribution αkn

1
Gaussian

F∆T (Uk−1
n−1) + (σkn ◦ zkn)

2 Uk
n + (σkn ◦ zkn)

3
Uniform

F∆T (Uk−1
n−1) +

(√
3σkn ◦ (2wk

n − 1)
)

4 Uk
n +

(√
3σkn ◦ (2wk

n − 1)
)

the solution states Uk
n get closer to Un, their variances would decrease—the benefit

of this property will be highlighted in Section 4.3. These (state-dependent) rules

were constructed to assess the performance of SParareal when the perturbations

had different distribution families, marginal means, or correlations. To derive error

bounds for the sampling rules, we need to define ξkn(Uk
n) in terms of αkn. To do this,

we simply equate (4.1d) and (3.5d) to find

ξkn(Uk
n) =

(
F∆T (αkn)− G∆T (αkn)

)
−
(
F∆T (Uk

n)− G∆T (Uk
n)
)
. (4.2)

Recall that sampling rules 1 and 2 correspond to multivariate Gaussian perturba-

tions with marginal means F∆T (Uk−1
n−1) and Uk

n , respectively, and marginal standard

deviations σkn = |G∆T (Uk
n−1)− G∆T (Uk−1

n−1)|. Sampling rules 3 and 4 correspond to

perturbations following a multivariate uniform distribution with the same marginal

means and standard deviations as rules 1 and 2, respectively. Note that in Sec-

tion 3.2.2, we considered both correlated and uncorrelated random variables αkn in

our experiments, whereas here we carry out analysis only for the uncorrelated case.

4.2 Error bound analysis

In this section, we will be analysing the mean-square error

ekn := E
[
‖u(tn)−Uk

n‖2
]
, (4.3)

between the exact solutions u(tn) (equivalently Un) and the stochastic numerical

solutions Uk
n located by SParareal (4.1). We also define the maximal mean-square

error (over time) at iteration k to be

êk := max
16n6N

{ekn}. (4.4)
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Specifically, we analyse the mean-square error ekn for the nonlinear (autonomous)

system of ODEs in (2.1), first deriving superlinear (Theorem 4.6) and linear (Corol-

lary 4.7) bounds using state-independent perturbations in SParareal. Then, using

these results, we derive linear bounds for the state-dependent sampling rules 2 and 4

(Corollary 4.13) and 1 and 3 (Corollary 4.14). In the following, we introduce some

assumptions on the flow maps (Gander and Hairer, 2008) and perturbations (Lie

et al., 2019) required to derive the error bounds.

Assumption 4.1 (Exact flow map F∆T ). The flow map F∆T solves (2.1) exactly

such that

u(tn+1) = F∆T (u(tn)). (4.5)

This assumption is made for simplicity, since SParareal is trying to locate the solution

that would be obtained by running the fine solver serially, i.e. (2.3), in parallel. If

instead we were to consider F∆T to be a numerical method with some (very small)

numerical error with respect to the exact solution, then the accuracy of F∆T would

provide a lower bound on the accuracy of the SParareal scheme as a whole.

Assumption 4.2 (One-step coarse flow map G∆T ). The flow map G∆T is a one-step

numerical method with uniform local truncation error O(∆T p+1), for p > 1, such

that

F∆T (u)− G∆T (u) = c1(u)∆T p+1 + c2(u)∆T p+2 + . . . , (4.6)

for u ∈ Rd and continuously differentiable functions ci(u). Taking the difference of

(4.6) evaluated at states u,v ∈ Rd, then applying norms and the triangle inequality,

we can write

‖ (F∆T (u)− G∆T (u))− (F∆T (v)− G∆T (v)) ‖ 6 C1∆T p+1‖u− v‖, (4.7)

where C1 > 0 is the Lipschitz constant for c1 and we absorb terms O(∆T p+2) into

C1.

Assumption 4.3 (Lipschitz coarse flow G∆T ). The flow map G∆T satisfies the

Lipschitz condition

‖G∆T (u)− G∆T (v)‖ 6 LG‖u− v‖, (4.8)

for u,v ∈ Rd and Lipschitz constant LG > 0.

Note that these assumptions do not restrict the choice of G∆T , as they are met when

choosing any Runge-Kutta or Taylor method (Hairer et al., 1993).
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In addition to assumptions on the flow maps, we require an assumption on the

absolute moments of the (state-independent) random variables, which will be needed

to prove Theorem 4.6.

Assumption 4.4 (Bounded absolute moments of ξkn). For q > 0, r̃ ∈ N ∪ {∞}, and

C2 > 0 independent of n, k, and ∆T , the r-th absolute moments of ξkn satisfy

E
[
‖ξkn‖r

]
6
(
C2∆T q+

1
2
)r
, 1 6 r 6 r̃. (4.9)

This assumption enables flexibility in defining the state-independent perturbations,

in the sense that it does not require that the random variables be centred or i.i.d.

(Lie et al., 2019). It also means that each ξkn could follow a different probability

distribution, with the only requirement being that they share a common maximal

bound on their absolute moments with respect to the norm. Note that we assume

∆T < 1 without loss of generality here, so that for increasing q, the perturbations

get smaller and smaller. For ∆T > 1, we can simply take q to be negative.

These assumptions will enable us to derive error bounds in the state-independent

and state-dependent cases (using sampling rules 2 and 4). The sampling rule 1 and

3 cases require an additional assumption.

Assumption 4.5 (Lipschitz exact flow F∆T ). The flow map F∆T satisfies the

Lipschitz condition

‖F∆T (u)−F∆T (v)‖ 6 LF‖u− v‖, (4.10)

for u,v ∈ Rd and constant LF > 0.

4.2.1 State-independent perturbations

In this section, we derive error bounds for SParareal when using the state-independent

perturbations ξkn(Uk
n) = ξkn.

Theorem 4.6 (Superlinear error bound for state-independent perturbations). Sup-

pose the SParareal scheme (4.1) with ξkn(Uk
n) = ξkn satisfies Assumptions 4.1, 4.2,

4.3, and 4.4. Then, the mean-square error (4.3) of the solution to the nonlinear

ODE system (2.1) at iteration k and time tn satisfies

ekn 6 DAk−1
n−k∑
`=0

(
`+ k − 1

`

)
B` + Λ

k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`,

for 2 6 k < n 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ),

Λ = C2
2∆T 2q+1(2 + ∆T−1), and D = Aê0.
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Proof. Using (4.1d), that F∆T is the exact solver (4.5), and adding and subtracting

G∆T (u(tn)), we see that

ek+1
n+1 = E

[
‖F∆T (u(tn))−

(
G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n) + ξkn(Uk
n)
)
± G∆T (u(tn))‖2

]
= E[‖W1 +W2 +W3‖2],

where W1, W2, and W3 are given by

W1 = F∆T (u(tn))− G∆T (u(tn))−
(
F∆T (Uk

n)− G∆T (Uk
n)
)
,

W2 = G∆T (u(tn))− G∆T (Uk+1
n ),

W3 = −ξkn.

Then, using the triangle inequality and (D.1) for the cross terms (Engblom, 2009,

Sec. 4.2), we obtain

ek+1
n+1 6 (1 + δ−1

1 + δ−1
2 )E[‖W1‖2] + (1 + δ1 + δ−1

3 )E[‖W2‖2] + (1 + δ2 + δ3)E[‖W3‖2]. (4.11)

Using (4.7), we can bound

E[‖W1‖2] 6 C2
1∆T 2(p+1)ekn. (4.12)

Applying the Lipschitz condition (4.8), we obtain

E[‖W2‖2] 6 L2
Ge
k+1
n . (4.13)

Using (4.9) with r = 2, we obtain

E[‖W3‖2] 6 C2
2∆T 2q+1. (4.14)

Plugging (4.12)–(4.14) into (4.11) and choosing δ1 = ∆T , δ2 = 1, and δ3 = ∆T−1,

we obtain the double recursion

ek+1
n+1 6 Aekn +Bek+1

n + Λ, e1
n+1 6 D +Be1

n, (4.15)

where A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ = C2
2∆T 2q+1(2 + ∆T−1),

and D = Aê0. Solving (4.15) using the generating function method in Lemma D.3,

we obtain the result.

One can make alternative choices for δ1, δ2, and δ3, however, the choices given

in the proof above seem to yield the tightest error bounds. If we were to maximise

(4.15) over n, we obtain the following linear error bound in the case that B < 1, i.e.

LG < (1 + 2∆T )−1/2.
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Corollary 4.7 (Linear error bound for state-independent perturbations). Suppose

the SParareal scheme (4.1) with ξkn(Uk
n) = ξkn satisfies Assumptions 4.1, 4.2, 4.3,

and 4.4. Then, the maximal mean-square error (4.4) of the solution to the nonlinear

ODE system (2.1) at iteration k satisfies

êk 6 ê1

(
A

1−B

)k−1

+
Λ

1−B

k−2∑
j=0

(
A

1−B

)j
, if B < 1,

for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), and

Λ = C2
2∆T 2q+1(2 + ∆T−1).

Proof. Following the proof of Theorem 4.6, we maximise (4.15) over n to obtain

êk+1 6 Ãêk + Λ̃, (4.16)

where

Ã =
A

1−B
and Λ̃ =

Λ

1−B
.

Solving recursion (4.16) with initial condition ê1, we obtain the desired result.

Remark 4.8. The bounds in Theorem 4.6 and Corollary 4.7 hold for 2 6 k < n 6 N

due to the design of the SParareal scheme. We can recover the bound for iteration

k = 1 (which is deterministic) by solving the second recursion in (4.15) with initial

value e1
1 = 0 such that

e1
n 6 ê0A

n−2∑
i=0

Bi, 1 6 n 6 N. (4.17)

For the case when k = n, the numerical error is zero, as F∆T will have propagated

the exact initial condition at t0 forward k times without any perturbations, just like

Parareal.

Remark 4.9. The bound in Theorem 4.6 (similarly for Corollary 4.7) can be written

as

ekn 6 Ck,n max{∆T (2p+1)k,∆T 2q}, (4.18)

where Ck,n is a function of n and k. Assuming ∆T < 1 and that Ck,n is non-increasing

in k, the accuracy of SParareal should increase with each iteration proportional to

the local truncation error of G (i.e. the term ∆T (2p+1)k) up until the errors induced

by the perturbations (i.e. ∆T 2q) become dominant. We illustrate this property

numerically in Section 4.3.
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Remark 4.10. As ∆T → 0, both error bounds go to zero as expected, as can be

seen clearly in (4.18). The intuition being that as ∆T → 0, the local truncation error

of G∆T goes to zero, i.e. it ‘becomes’ the exact flow map F∆T , see (4.7).

Remark 4.11. If we send q →∞, the second moments of the random variables vanish

and we recover the classic Parareal scheme. This can be seen in both Theorem 4.6

and Corollary 4.7, where Λ vanishes as q →∞, leading to bounds similar to those

for classic Parareal. These bounds are not identical to those calculated by Gander

and Vandewalle (2007), Gander and Hairer (2008), and Gander et al. (2022) because

we are working with the mean-square error, not the (mean) absolute error.

Remark 4.12. If we additionally assume that the random variables ξkn are centred,

i.e. E[ξkn] = 0, and work in the 2-norm, i.e. ‖u‖22 = 〈u,u〉 =
∑d

i=1 u
2
i , in the proof of

Theorem 4.6, we can write (4.11) as

ek+1
n+1 6 (1 + δ−1

1 )E[‖W1‖2] + (1 + δ1)E[‖W2‖2] + E[‖W3‖2]

+ 2E[〈W1,W3〉] + 2E[〈W2,W3〉],

where the final two terms are equal to zero by independence of W1 and W2 with

W3 and using the fact that each ξkn is centred. Continuing the proof, we obtain

the same bounds for Theorem 4.6 and Corollary 4.7 with slightly altered constants

A = C2
1∆T 2p+2(1 + ∆T−1), B = L2

G(1 + ∆T ), Λ = C2
2∆T 2q+1, and D = Aê0.

4.2.2 State-dependent perturbations (sampling rules)

We now use the previous results to derive the corresponding error bounds for the

state-dependent sampling rules defined in Table 4.1.

Corollary 4.13 (Linear error bound for state-dependent sampling rules 2 and 4).

Suppose the SParareal scheme (4.1) satisfies Assumptions 4.1, 4.2, and 4.3, with

ξkn(Uk
n) defined using sampling rule 2 or 4. Then, the maximal mean-square error

(4.4) of the solution to the nonlinear ODE system (2.1) at iteration k satisfies

êk 6 ê0

[
A+ Λ1 +

√
(A+ Λ1)2 + 4Λ2(1−B)

2(1−B)

]k
, if B < 1,

for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ),

Λ1 = C2
1∆T 2p+2L2

G(1 + ∆T−1), and Λ2 = C2
1∆T 2p+2L2

G(1 + ∆T ).

Proof for sampling rule 2. The proof follows in the same fashion as Theorem 4.6.

Instead of using the bound (4.14), we obtain, using (4.2) and applying (4.7),

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖αkn −Uk

n‖2]. (4.19)
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Substituting in αkn for sampling rule 2 (Table 4.1) we get

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖σkn ◦ zkn‖2]

6 C2
1∆T 2(p+1)E[‖σkn‖2]E[‖zkn‖2]

6 C2
1∆T 2(p+1)L2

GE[‖Uk
n−1 −Uk−1

n−1‖
2].

The second inequality follows by Cauchy-Schwarz and independence of σkn and zkn.

The third follows by plugging in σkn, applying (4.8), and noting that E[‖zkn‖2] = 1.

Next, we add and subtract u(tn−1) inside the expectation and then apply (D.1),

with δ = ∆T , to get

E[‖W3‖2] 6 C2
1∆T 2(p+1)L2

G
(
(1 + ∆T−1)ekn−1 + (1 + ∆T )ek−1

n−1

)
. (4.20)

Using the new bound for E[‖W3‖2] in (4.11), we obtain the double recurrence

ek+1
n+1 6 Aekn +Bek+1

n + Λ1e
k
n−1 + Λ2e

k−1
n−1, (4.21)

where A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ1 = C2
1∆T 2p+2L2

G(1 + ∆T−1),

and Λ2 = C2
1∆T 2p+2L2

G(1 + ∆T ). Maximising over n, we obtain

êk+1 6 Ãêk + B̃êk−1, (4.22)

where

Ã =
A+ Λ1

1−B
and B̃ =

Λ2

1−B
.

Recursion (4.22) can be solved using Lemma D.4, resulting in the desired bound.

Proof for sampling rule 4. The proof follows in the same way as the proof for

sampling rule 2, except that E[‖
√

3(2wk
n − 1)‖2] = 1 is used in place of E[‖zkn‖2] = 1.

Corollary 4.14 (Linear error bound for state-dependent sampling rules 1 and 3).

Suppose the SParareal scheme (4.1) satisfies Assumptions 4.1, 4.2, 4.3, and 4.5, with

ξkn(Uk
n) defined using sampling rule 1 or 3. Then, the maximal mean-square error

(4.4) of the solution to the nonlinear ODE system (2.1) at iteration k satisfies

êk 6 ê0

[
A+ Λ1 + Λ3 +

√
(A+ Λ1 + Λ3)2 + 4Λ2(1−B)

2(1−B)

]k
, if B < 1,

for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ),

Λ1 = 2C2
1∆T 2p+2L2

G(1 + ∆T−1), Λ2 = 2C2
1∆T 2p+2(L2

G(1 + ∆T ) + 2L2
F), and Λ3 =

4C2
1∆T 2p+2.
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Proof for sampling rule 1. The proof follows in the same fashion as Corollary 4.13.

Substituting αkn for sampling rule 1 (Table 4.1) in (4.19), we get

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖F∆T (Uk−1

n−1)−Uk
n + σkn ◦ zkn‖2]

6 2C2
1∆T 2(p+1)

(
E[‖F∆T (Uk−1

n−1)−Uk
n‖2]︸ ︷︷ ︸

1st Term

+E[‖σkn ◦ zkn‖2]︸ ︷︷ ︸
2nd Term

)
. (4.23)

The second inequality follows by applying (D.1) with δ = 1. To bound the first term

in (4.23), we add and subtract F∆T (u(tn−1)) inside the expectation and apply (D.1)

again with δ = 1, obtaining

1st Term 6 2
(
E[‖F∆T (Uk−1

n−1)−F∆T (u(tn−1))‖2] + E[‖F∆T (u(tn−1))−Uk
n‖2]

)
6 2
(
L2
Fe

k−1
n−1 + ekn

)
.

The second inequality follows by applying the Lipschitz condition (4.10) and recalling

that F∆T is the exact solver (4.5). The second term in (4.23) can be bounded as in

(4.20) in Corollary 4.13,

2nd Term 6 L2
G
(
(1 + ∆T−1)ekn−1 + (1 + ∆T )ek−1

n−1

)
.

Combining both terms in (4.23), we obtain

E[‖W3‖2] 6 Λ1e
k
n−1 + Λ2e

k−1
n−1 + Λ3e

k
n,

where Λ1 = 2C2
1∆T 2p+2L2

G(1 + ∆T−1), Λ2 = 2C2
1∆T 2p+2(L2

G(1 + ∆T ) + 2L2
F ), and

Λ3 = 4C2
1∆T 2p+2. Using the new bound for E[‖W3‖2] in (4.11), we obtain the

following recurrence

ek+1
n+1 6 (A+ Λ3)ekn +Bek+1

n + Λ1e
k
n−1 + Λ2e

k−1
n−1, (4.24)

where A = C2
1∆T 2p+2(2 + ∆T−1) and B = L2

G(1 + 2∆T ). Maximising over n, we

obtain

êk+1 6 Ãêk + B̃êk−1, (4.25)

where

Ã =
A+ Λ1 + Λ3

1−B
and B̃ =

Λ2

1−B
.

Recursion (4.25) can be solved using Lemma D.4, resulting in the desired bound.

Proof for sampling rule 3. The proof follows in a similar fashion to the proof for

sampling rule 1, with E[‖
√

3(2wk
n− 1)‖2] = 1 being used in place of E[‖zkn‖2] = 1.
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Remark 4.15. In Section 4.3, we can observe the behaviour of ekn (not just êk) for

each of the sampling rules by solving the recursions (4.21) and (4.24) numerically.

We do this by replacing the inequality with an equality, i.e. upper bounding the error

estimate.

4.3 Numerical experiments

Here, we present some experiments to compare the theoretical bounds derived in

Section 4.2 with the errors generated by running SParareal numerically.

4.3.1 System of linear ODEs

In the following experiments, we solve the linear system

du

dt
= Qu over t ∈ [0, T ], with u(0) = u0, (4.26)

where Q ∈ Rd×d. This system has the exact solution u(t) = u0eQt, where eQt =∑∞
i=0(Qt)i/i! is the matrix exponential.

First, we examine the superlinear and linear bounds derived in Theorem 4.6 and

Corollary 4.7, respectively, by running SParareal numerically with state-independent

Gaussian perturbations

ξkn ∼ N (0,∆T 2q+1Id), q > 0. (4.27)

We solve (4.26) with d = 100 and T = 2, discretising the time interval into N = 20

time slices so that ∆T = 0.1. We construct the matrix of coefficients Q such that

(a) q = 0 (b) q = 5 (c) q = 10

Figure 4.1: Theoretical bounds vs. numerical errors for SParareal applied to the
linear system of ODEs (4.26) (with B < 1) using state-independent Gaussian perturba-
tions (4.27). The superlinear bound (Theorem 4.6) is given in blue, the linear bound
(Corollary 4.7) in red, the numerical error in black, and ∆T 2q+1 in dashed black. Each
plot corresponds to a different level of Gaussian noise: (a) q = 0, (b) q = 5, and (c)
q = 10. Numerical errors were calculated by averaging over 500 independent realisations
of SParareal.
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(a) q = 0 (b) q = 5 (c) q = 10

Figure 4.2: Theoretical bounds vs. numerical errors for SParareal applied to the linear
system of ODEs (4.26) (with B > 1) using state-independent Gaussian perturbations
(4.27). The superlinear bound (Theorem 4.6) is given in blue, the numerical error
in black, and ∆T 2q+1 in dashed black. Each plot corresponds to a different level of
Gaussian noise: (a) q = 0, (b) q = 5, and (c) q = 10. Numerical errors were calculated
by averaging over 500 independent realisations of SParareal.

B < 1 and also select a fixed initial condition u0 ∈ [−5, 5]d. We use the exact

solver F∆T (u) = ueQ∆T and the forward Euler method G∆T (u) = (Id + Q∆T )u.

In Figure 4.1, we plot the maximal theoretical bounds êk and numerical errors of

SParareal as a function of k for different values of q when B < 1. These results

illustrate how the errors decrease as k increases (except when q = 0), up until the

error induced by the perturbations become dominant—exactly the effect described

in Remark 4.9. For all considered values of q, the error for k > 2 has a hard lower

bound of O(∆T 2q+1), i.e. the error cannot go below the second moments of the

perturbations (indicated by the dashed black line in each case). By altering Q and

running the same experiment, we see similar effects in the B > 1 case, see Figure 4.2.

Figure 4.3: Largest second moments (over n) of ξkn(Uk
n) for the sampling rules 1 to 4

(light blue, brown, purple, and green respectively) and the Gaussian perturbations (4.27)
for q ∈ {0, 5, 10} (dashed black), plotted against iteration number k. Second moments
for the sampling rules were calculated by averaging over 500 independent realisations of
SParareal.
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(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3

Figure 4.4: Theoretical bounds vs. numerical errors for SParareal applied to the linear
system of ODEs (4.26) (with B < 1) using the state-dependent sampling rules. (a)
The linear bound in Corollary 4.13 is shown in red, the numerically solved recursion
(4.21) in blue, and the numerical errors for sampling rules 2 and 4 in brown and green,
respectively. (b) The linear bound in Corollary 4.14 is shown in red, the numerically
solved recursion (4.24) in blue, and the numerical errors for sampling rules 1 and 3 in
light blue and purple, respectively. Numerical errors were calculated by averaging over
500 independent realisations of SParareal.

It can be seen that, regardless of B, using the state-independent perturbations

may not be optimal because of the lower bound forced upon the errors. If they are

to be used, then they would need to be chosen such that the second moments are

smaller than the accuracy of the solutions sought. This approach, however, may not

yield accelerated convergence over the classic Parareal scheme. To avoid this (and

the lower bound on accuracy), the perturbations need to be state-dependent and

therefore able to adapt, i.e. the second moments need to decrease with k and scale

with n. In Figure 4.3, we illustrate how the second moments of the perturbations

used in the state-dependent sampling rules decrease with k throughout the SParareal

simulation, comparing these to the fixed second moments of the Gaussians (4.27)

for each q ∈ {0, 5, 10} (dashed lines). Using the sampling rules enables SParareal

to sample from probability distributions that begin to “contract” around the exact

solution states as the simulation progresses, i.e. as k increases. This results in high

solution accuracy in very few iterations, as will be shown in Figure 4.4.

It should be noted that we could have also chosen a different distribution other

than the Gaussian from which to sample each state-independent ξkn, as long as As-

sumption 4.4 is satisfied. For example, choosing uniformly distributed perturbations

ξkn ∼ U [−
√

3∆T q+
1
2 ,
√

3∆T q+
1
2 ]d yielded almost identical results (not shown).

Next, we plot the linear bounds for perturbations defined by the sampling rules,

i.e. Corollary 4.13 and Corollary 4.14, against the corresponding numerical errors in

Figure 4.4 (for the B < 1 problem). We observe that the linear bounds are not that

tight due to the maximisation over n required to derive them. However, by solving
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Figure 4.5: Expected number of iterations k taken to reach stopping tolerance ε
(2.10) for SParareal applied to the linear system (4.26) (with B < 1). Results plotted
using SParareal with each sampling rule (see legend) and the Gaussian perturbations
(4.27) for q ∈ {0, 5, 10, 25} (dashed black lines). E[k] calculated by averaging k over 500
independent realisations of SParareal.

recursions (4.21) and (4.24) numerically (recall Remark 4.15), we observe a tighter

bound on the error. All that is required to calculate these numerical bounds are the

errors at the ‘zeroth’ iteration (obtained from SParareal itself by just running G),

errors at the first iteration (recall (4.17)) and the constants C1 and LG . Note that the

numerical errors for sampling rules 2/4 and 1/3 overlap because the perturbations

used in each scheme have almost identical second moments (recall Figure 4.3).

In Figure 4.5, we compare the performance of the state-independent and -

dependent perturbations by plotting the expected number of iterations E[k] taken to

reach a pre-defined stopping tolerance ε, recall (2.10). We observe that, on average,

the sampling rules reach tolerance in fewer iterations than the state-independent

perturbations. The sampling rules also outperform classic Parareal, which can be

observed by comparing them to the state-independent perturbations for q = 25,

for which perturbations are so small that SParareal is practically deterministic (i.e.

Parareal). Recall that reducing k by even a few iterations can significantly increase

parallel speedup.

4.3.2 Scalar nonlinear ODE

In the following experiments, we solve the scalar nonlinear equation

du

dt
=
√
u2 + 2 over t ∈ [−1, 1], with u(−1) = 5. (4.28)

This equation has exact solution u(t) =
√

2 sinh(t + 1 + sinh−1(5/2)). We solve

(4.28) using SParareal with N = 20 time slices (thus ∆T = 0.1), exact solver

F∆T (u) =
√

2 sinh(∆T + sinh−1(u/
√

2)), and forward Euler G∆T = u+ ∆T
√
u2 + 2.
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(a) q = 1 (b) q = 5 (c) q = 10

Figure 4.6: Theoretical bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using state-independent Gaussian pertur-
bations (4.27). The superlinear bound (Theorem 4.6) is given in blue, the numerical
error in black, and ∆T 2q+1 in dashed black. Each plot corresponds to a different level of
Gaussian noise: (a) q = 1, (b) q = 5, and (c) q = 10. Numerical errors were calculated
by averaging over 500 independent realisations of SParareal.

Figure 4.6 illustrates a good match between the superlinear bound (Theorem 4.6,

B > 1) and the numerical errors when using SParareal and the Gaussian perturbations

(4.27). One can see that at k = 0 the error is quite large, O(101), and so even when

using the forward Euler method for G∆T , the SParareal error decreases rapidly (for

sufficiently large q). Given the bounds in Corollary 4.13 and Corollary 4.14 only hold

when B < 1, we again solve the respective recursions (4.21) and (4.24) numerically,

obtaining a good match between theory and numerics when using the sampling rules

(see Figure 4.7). Figure 4.8 illustrates the performance of the state-independent

(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3

Figure 4.7: “Numerical” bounds vs. numerical errors for SParareal applied to the
nonlinear scalar ODE (4.28) (with B > 1) using the state-dependent sampling rules. (a)
The numerically solved recursion (4.21) is shown in blue and the numerical errors for
sampling rules 2 and 4 in brown and green, respectively. (b) The numerically solved
recursion (4.24) is shown in blue and the numerical errors for sampling rules 1 and 3 in
light blue and purple, respectively. Numerical errors were calculated by averaging over
500 independent realisations of SParareal.
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Figure 4.8: Expected number of iterations k taken to reach stopping tolerance ε (2.10)
for SParareal applied to the nonlinear scalar ODE (4.28) (with B > 1). Results plotted
using SParareal with each sampling rule (see legend) and the Gaussian perturbations
(4.27) for q ∈ {0, 5, 10, 25} (dashed black lines). E[k] calculated by averaging k over 500
independent realisations of SParareal.

perturbations and the sampling rules for varying stopping tolerances. As it did for

the system of linear ODEs, using SParareal with state-dependent perturbations is

more effective than with the state-independent perturbations, regardless of the chosen

value of q for the Gaussian perturbations (recall that Parareal can be recovered when

choosing q > 25).

4.4 Discussion and further work

The SParareal algorithm solves IVPs by perturbing solutions from the classic (de-

terministic) Parareal scheme using (in this version) a single sample drawn from

pre-specified probability distributions. This sampling-based time-parallel scheme

generates stochastic solutions to the IVP. In this chapter, we analysed the error

of these stochastic numerical solutions by deriving mean-square error bounds for

SParareal, equipped with different types of perturbations.

In Section 4.2, we make assumptions about the fine and coarse numerical integra-

tors used by SParareal, namely that F∆T returns the exact solution to the ODE and

that G∆T has uniform local truncation error and satisfies a Lipschitz condition. Error

bounds were then derived for two types of random perturbation, one in which the ran-

dom variables do not depend on the current state of the system (state-independent)

and one in which they do (state-dependent). In the state-independent case, where

specific upper bounds were assumed on the second moments of the random variables,

we derived both superlinear (Theorem 4.6) and linear (Corollary 4.7) bounds on the

mean-square error. In the state-dependent case, where a number different pertur-

bations were defined according to sampling rules (Section 4.1.2), we derived linear

bounds on the errors (see Corollaries 4.13 and 4.14).
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4.4. Discussion and further work

In Section 4.3, we illustrate these bounds, comparing them to the errors generated

by running SParareal numerically. We demonstrate a good match between the

theoretical bounds and numerical errors for systems of linear ODEs and a scalar

nonlinear ODE. Using the state-independent perturbations, we observed tight bounds

with respect to the numerical errors. However, because these perturbations do not

adapt with iteration k and time step n, their practical usage faces limitations.

They encode a hard lower bound on solution accuracy (of the order of the size of

the second moments, see Remark 4.9) and more iterations were typically required

to reach stopping tolerance for larger perturbations. Instead, the sampling rules,

shown to adapt with both k and n, did not suffer from these issues, as was previously

discussed in Chapter 3. The derivation of the linear bounds for the sampling rules did,

however, require multiple applications of the Peter-Paul inequality (Appendix D.1),

resulting in less tight bounds compared to those found in the state-independent

case. Tighter bounds were observed by solving the double recursions (4.21) and

(4.24) numerically. In addition, these linear bounds required the constant B to be

less than one (restricting its use to problems where the Lipschitz constant for G∆T

is smaller than one) and that F∆T be Lipschitz continuous for sampling rules 1

and 3 (an additional restriction). In the future, it would be interesting to see if

these restrictions can be avoided or whether one can derive bounds by relaxing the

Lipschitz assumptions.

As HPC technology advances, the demand for faster and more accurate time-

parallel integration methods will increase. With SParareal, we have seen that

introducing local perturbations into an existing time-parallel scheme can enable

convergence in fewer iterations (using the sampling rules) and can, on average, result

in higher accuracy solutions (refer back to numerical experiments in Sections 3.3

and 4.3). Following multiple realisations of SParareal, these solutions can form a

distribution over the exact solution, the accuracy of which can be estimated using the

error bounds in this chapter. Further work is required to investigate whether similar

bounds can be derived for the original SParareal scheme (where M samples drawn

instead of just one) which is able to locate solutions with increasing accuracy and

numerical speedup when increasing numbers of samples are taken. In addition, in

most practical applications, the exact flow map F∆T is unknown and so it would be

advantageous to investigate what happens when one relaxes this assumption, taking

F∆T to be a numerical flow map.

Having now shown rigorously that solutions from SParareal are accurate, we

conclude our work on SParareal. A discussion on its significance and impact will be

made in Chapter 7. We now move on to discuss GParareal, a learning-based time

parallel algorithm whereby we seek to make use of all solution data generated by

Parareal in a Bayesian manner.
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Chapter 5

GParareal I: a learning-based

time-parallel algorithm

Overview

In this chapter we propose GParareal, a learning-based time-parallel algorithm that

solves IVPs by inferring the (expensive) multi-fidelity correction term in Parareal,

i.e. the difference between fine and coarse solutions, using a Gaussian process (GP)

emulator. In SParareal, we showed that we could use the fine and coarse solution

data at a given iteration to construct probability distributions for sampling, obtaining

better corrections through increased sampling and propagation. We now approach the

problem from a Bayesian viewpoint with the aim of using the acquisition data, i.e. the

coarse and fine solutions from all prior iterations, to infer better corrections. We use

these corrections in a slightly modified PC update, whereby the coarse solver makes

rapid low-accuracy predictions (just like Parareal/SParareal) that are subsequently

refined using a correction obtained by querying the “trained” GP emulator. As with

SParareal, the hope is that the corrections provided by the GP emulator (trained

using the acquisition data) are more accurate than those that would come from the

standard Parareal correction.

We start in Section 5.1 by giving an overview of what a GP emulator is, how

it works, and why they are extremely useful for emulating functions when one

only has access to limited (expensive) data. We then provide a high level overview

of the idea behind GParareal and motivate why using learning-based methods is

beneficial for PinT simulations. Following this, we briefly review similar PinT

algorithms that have made use of learning-based methods both inside and outside of

the Parareal framework. In Section 5.2, we derive GParareal and explain, in detail,

how the GP is conditioned on the acquisition data, how the GP hyperparameters,

and provide expressions for the computational complexity. Using a result on GP

posterior consistency and the assumptions defined in Chapter 4, we will also derive
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5.1. Motivation and background

an error bound for the GParareal solutions at a given iteration, showing that errors

are proportional to the accuracy of the emulator.

In Section 5.3, we perform numerical experiments on HPC facilities to compare

and contrast the performance of GParareal and Parareal. We demonstrate good

performance in terms of convergence, wallclock time, and solution accuracy on a

number of low-dimensional nonlinear ODE problems using just acquisition data.

Furthermore, we demonstrate how the GP emulator captures variability in the

correction term, enabling convergence in cases where the coarse solver is too inaccurate

for Parareal. We also show that GParareal has the advantage of being able to use

archives of “legacy data”, e.g. solutions from prior runs of GParareal using different

initial conditions, to further accelerate convergence of the method. Strong scaling

experiments confirm that our theoretical wallclock time and speedup estimates for

GParareal (and Parareal) are valid. In addition, these experiments highlight that

the cost of training the emulator must be small with respect to the fine solver in

order for full speedup potential to be realised.

In Section 5.4, we discuss a modification to GParareal that can help with slow

convergence in situations where the emulator is insufficiently well-trained to locate

a solution in a small number of iterations. We show how one can introduce a

“Parareal fallback correction” by placing a switching tolerance on the GP posterior

standard deviations. This allows GParareal to automatically switch between taking

corrections from the GP emulator (when the variance is below tolerance) and the

standard Parareal correction (when variance is high and therefore the posterior mean

of the emulator is poor). We examine the feasibility of using the switching condition

with numerical experiments on the Lorenz96 system. We conclude in Section 5.5,

discussing the benefits, drawbacks, and open questions surrounding GParareal—some

of which we explore in Chapter 6.

5.1 Motivation and background

As before, we seek the same high resolution numerical solutions to (2.1) as expressed

in (2.3), except now we solve for an autonomous scalar ODE, i.e. f(t,u(t)) := f(u(t)).

This is just to simplify the explanation of GParareal—we will describe the extension

to the full nonautonomous multivariate case in Section 5.2.5. As with Parareal and

SParareal, we will denote the iteratively improved approximations from GParareal

as Ukn (as before, Uk0 = U0 = u0 ∀k > 0).

5.1.1 Gaussian process emulation

Emulators, also known as surrogate models, are statistical models that can approxi-

mate the output of deterministic black-box simulators (O’Hagan, 2006). A simulator

can be regarded as an expensive-to-evaluate function g : R→ R that takes an input
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x ∈ R and produces an output y = g(x), often taking seconds, minutes, or hours

to generate such an output. Emulators are designed to be able to rapidly infer (i.e.

generate a posterior probability distribution over) the value of g(x′) at any input

location x′ ∈ R without evaluating g(x′) itself. They do so by conditioning a prior

distribution over g on a limited set of simulator runs {(xj , yj)}Dj=1, where yj = g(xj).

This set is often referred to as the set of design points or the training set and can

often be generated in parallel.

GP emulators are a particular type of surrogate model that use multivariate Gaus-

sian distributions to infer g(x′) given a set of training data {(xj , yj)}Dj=1 (O’Hagan,

1978; Rasmussen and Williams, 2006). They are used almost ubiquitously in a

number of different settings including Bayesian optimisation (Murphy, 2023, Sec.

6.8), Tsunami modelling (Beck and Guillas, 2016; Liu and Guillas, 2017), and galaxy

dynamics (Gration and Wilkinson, 2019), to name but a few. Suppose we wish to use

a GP emulator to infer the (a priori unknown) function g(x) = cos(x) with a small

training set. Firstly, we define a GP as a collection of random variables, any finite

subset of which has a joint Gaussian distribution (Rasmussen, 2004). Therefore, we

can define a GP prior over g as

g ∼ GP(m,κ), (5.1)

meaning that g is distributed as a GP with mean function m : R→ R and covariance

kernel κ : R× R→ R. To visualise what this means, consider a set of input values

x ∈ RJ , which yield the corresponding vector of means µ(x) = (m(xj))
ᵀ
j=1,...,J and

the covariance matrix K(x,x) = (κ(xi, xj))i,j=1,...,J . Suppose we choose m(x) ≡ 0

and use the square exponential (SE) kernel

κ(xi, xj) = σ2 exp

(
−(xi − xj)2

2`2

)
, for some xi, xj ∈ R, (5.2)

with input and output length scales `2 = 1 and σ2 = 0.75, respectively1. The prior

from (5.1) can now be written in finite dimensional form

g(x) ∼ N
(
µ(x),K(x,x)

)
, (5.3)

which we illustrate in Figure 5.1(a) and from which we can draw samples, see

Figure 5.1(b).

Clearly, the prior (and the samples drawn) do not resemble g(x) = cos(x).

Suppose we now have access to D = 5 evaluations of g—see Figure 5.1(c). We can

1These parameters, often referred to as hyperparameters, are specified a priori here, however,
they are usually optimised with respect to the training dataset to obtain a more accurate GP
posterior distribution—something we will discuss how to do in Section 5.2.2.
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(a) (b)

(c) (d)

Figure 5.1: Modelling the unknown function g(x) = cos(x) using a GP emulator. (a)
True unknown function g(x) (solid black) and the GP prior over g (5.3) with mean
(solid blue) and 95% confidence interval (light purple). (b) The same plot as (a) with
five samples (multicoloured) drawn from the GP prior. (c) The GP prior, now plotted
with D = 5 evaluations {(xj , yj)}Dj=1 of g. (d) The GP posterior over g (5.4).

condition the prior (5.3) on these evaluations analytically2 to obtain a Gaussian

posterior distribution over g(x′) at any input location x′ ∈ R:

g(x′) | {x,y} ∼ N
(
µ̂(x′), K̂(x′, x′)

)
, (5.4)

with mean

µ̂(x′) = µ(x′)︸ ︷︷ ︸
=0

+K(x′,x)[K(x,x)]−1
(
y − µ(x)︸︷︷︸

=0

)
(5.5)

and variance

K̂(x′, x′) = K(x′, x′)−K(x′,x)[K(x,x)]−1K(x, x′). (5.6)

2To see how the expressions of the posterior mean and covariance are calculated, see Murphy
(2022, Sec. 3.2.3).
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In Figure 5.1(d) we can see that the posterior mean now interpolates the training data

exactly and the posterior variance is zero at these locations. As we move away from

an observed value of g(x), the mean deviates from the true g(x) and the posterior

variance increases, telling us that the emulator is more uncertain about the value of

g(x) at unobserved locations.

The key reason for using an emulator to model g is that we can rapidly query

the posterior (5.4) at any x′ ∈ R without evaluating g(x′) itself. The idea is that

the cost of inferring g(x′) (5.4) (which is proportional to the cost of inverting the

covariance matrix K(x,x)) should be much smaller than the cost of evaluating g(x′).

In addition, GP emulators are flexible enough that one can choose any prior mean

and covariance functions based on known structure of the function being emulated.

For example, if we know the function is periodic (as we know g(x) = cos(x) is) then

we can prescribe this property within the mean/covariance functions—see Rasmussen

and Williams (2006, Chp. 4). One can of course emulate multivariate functions as

well (which we will need to do in GParareal) and for this one can use vector-valued

GP emulators (Álvarez et al., 2011). Next, we describe how we utilise a GP emulator

within the Parareal framework.

5.1.2 Our approach

In Parareal, we know that the PC (2.9c) updates the solutions Ukn using a correction

term based on information (from the solvers F∆T and G∆T ) calculated during the

previous iteration k − 1. In a Markovian-like manner, all fine/coarse information

about the solution obtained prior to iteration k − 1 is ignored by the PC, a feature

present in most Parareal-type algorithms and variants (Ait-Ameur et al., 2020; Dai

et al., 2013; Elwasif et al., 2011; Maday and Mula, 2020), including SParareal. As

mentioned before, the goal is to demonstrate that all of the fine and coarse solution

information accumulated up to iteration k, i.e. the acquisition data, can be exploited

to determine a solution in faster wallclock time than Parareal.

In GParareal, we propose the following update rule, again based on a coarse pre-

diction and multi-fidelity correction, that instead refines solutions using information

from the current iteration k, rather than k − 1:

Ukn = F∆T (Ukn−1)

= (F∆T − G∆T + G∆T )(Ukn−1)

= G∆T (Ukn−1)︸ ︷︷ ︸
prediction

+ (F∆T − G∆T )(Ukn−1)︸ ︷︷ ︸
correction

1 6 k < n 6 N. (5.7)

If Ukn−1 is known, the prediction term is rapidly calculable, however the correction is

not known explicitly without running F∆T at expensive cost. We propose using a GP

emulator to infer the correction term, which we know is computationally expensive
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to simulate due to the presence of the F∆T term. We can condition a GP prior

over F∆T − G∆T on all previously obtained evaluations of F∆T and G∆T to obtain

a Gaussian posterior distribution from which we can extract an explicit value and

carry out the refinement in (5.7).

The solutions generated by GParareal should converge to the exact solution

assuming the accuracy of the emulator increases as more acquisition data is obtained

each iteration. The hope is that the GP predictions should be more accurate than

those provided by Parareal. This approach could be particularly beneficial if one

wishes to fully understand and evaluate the dynamics of (2.1) by simulating solutions

for a range of initial values u0 or over different time intervals. Firstly, if one can obtain

additional parallel speedup, generating such a sequence of independent simulations

becomes more computationally tractable in feasible time. Secondly, the legacy data,

i.e. batches of acquisition data accumulated between independent simulations, can

be used to inform future simulations by increasing the size of the dataset available

to the GP emulator prior to simulation. Being able to re-use (expensive) acquisition

or legacy data to integrate IVPs in parallel is not something, to the best of our

knowledge, that existing time-parallel algorithms can do.

5.1.3 Related work

As briefly mentioned in Chapter 1, learning-based methods have been previously

developed to solve IVPs in PN (Hennig et al., 2022). The first ODE filters used

GP regression3 techniques to calculate a posterior probability distribution over the

solution to an IVP at any t ∈ [t0, T ]—recall Figure 1.4(b). They achieved this

by conditioning the GP on observation data, i.e. inexact solution and derivative

evaluations from the IVP, obtained sequentially in time. Since then, modern ODE

filters have moved away from GP regression methods, instead using Gauss-Markov

processes (Øksendal, 2013) that can make use of more computationally efficient

Kalman filters and Rauch-Tung-Striebel smoothers (Bosch et al., 2021; Särkkä, 2013;

Schober et al., 2019; Tronarp et al., 2019; Wenger et al., 2021). Even though such

methods are becoming computationally competitive (compared to classical methods)

(Kersting et al., 2020; Krämer et al., 2022), running them sequentially over large

time intervals or expensive vector fields is still a computationally intractable process.

While there has been some work on parallelising the implementation of Kalman

filters and smoothers (Särkkä and Garciá-Fernández, 2021) as well as particle-based

smoothers (Corenflos et al., 2022), i.e. de-sequentialised Monte Carlo, it does not seem

as though these methods have yet been deployed within the ODE filter framework.

Although this would be of interest, we instead harness ideas from the early PN ODE

3GP regression models condition a GP prior using observations that contain uncertainty, i.e.
are corrupted by statistical noise (not necessarily Gaussian). GP emulators, on the other hand,
condition on observations that are assumed to have no uncertainty, i.e. are noise-free.
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filters in a slightly different way by modelling the residual between solutions provided

by the deterministic fine and coarse solvers in Parareal rather than modelling the

solution to the IVP itself. This is mainly because the filters and smoothers used in

the PN ODE solvers handle time series data that arrives sequentially whereas the

acquisition data in Parareal, which arrives in batches each iteration, does not depend

on time. While the method proposed in this chapter will not return a probabilistic

solution to (2.1) like the sequential PN ODE filters do, we believe that it constitutes

a positive step in this direction.

Within the PinT field, the first work investigating whether acquisition data could

be used to improve solutions generated by the PC was Krylov-enhanced Parareal,

introduced by Gander and Petcu (2008). The idea was to construct a projection

operator, using a Krylov-subspace spanned by the PC solution set, to replace the

coarse solver—of which the accuracy should increase as more data is accumulated.

This variant was designed to deal with the slow convergence observed when solving

hyperbolic (non-diffusive) IVPs (Gander and Vandewalle, 2007; Ruprecht, 2018).

The Krylov subspace approach was shown to work well for a linear acoustic-advection

system by Ruprecht and Krause (2012) and was extended to work for nonlinear

problems (slightly outside the Parareal framework) by Cortial and Farhat (2009).

Rather than replacing the coarse solver and using the PC solution dataset, as the

aforementioned works do, we will make use of the fine and coarse solution dataset to

replace the correction term, which should hopefully be easier to model. In addition,

the (serial) cost incurred by constructing a new coarse solver grows as more acquisition

data is accumulated and is something we need to bear in mind when analysing the

computational complexity of GParareal.

To further resolve issues created by the coarse solver in Parareal (e.g. numerical

instabilities, accuracy, and slow convergence) work has begun on replacing the coarse

solver with neural networks (NNs). Yalla and Engquist (2018) use a NN to emulate

F∆T using (legacy) data obtained by propagating M training points (either randomly

selected or guided by an initial coarse solve) with F∆T (in parallel). Numerical

experiments show that linear systems can be simulated in one iteration (something

we will discuss further in Chapter 6) and nonlinear systems in fewer iterations than

Parareal (if M is sufficiently large) when they use the NN in place of G∆T . These

results, however, make no mention of the computational costs (and the number of

processors) required to generate the training data or train the NN. Similar findings

are reported in Agboh et al. (2020) when applying the same methodology to IVPs

in robotic manipulation. In Nguyen and Tsai (2022), a NN is constructed to learn

a mapping from the coarse to the fine solution space and then used in place of

G∆T . With the aim of solving wave equations, numerical results suggest that the

NNs trained using acquisition data (obtained throughout the simulation) were more

beneficial for faster convergence than pre-generated (legacy) data sampled randomly
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throughout the state space. On a similar but different track, it is worth mentioning

the work of Lee et al. (2022), in which Parareal is used to speedup the training process

of a NN, something that could be worth considering in the aforementioned works

where the (almost certainly significant) serial training costs were ignored. These

findings demonstrate that learning-based methods can indeed be used to accelerate

the convergence of Parareal, however, much work still needs to be done to assess the

cost of training, optimising, and tuning the NNs and determine whether they are

actually viable in large-scale PinT simulations.

Also worth briefly mentioning are the use of physics-informed neural networks

(PINNs) within the PinT framework. PINNs approximate the solution to IVPs by min-

imising a loss function comprised of the equations being solved, the initial/boundary

conditions, and any other known information of the system (e.g. conservation laws).

Training data is sampled randomly throughout the domain, however, the choice of

these data points, the NN architecture, and optimisation process has a large impact

on performance and accuracy—see Cuomo et al. (2022) for an overview. So far,

PINNs have been used to solve a number of time-dependent PDE problems and are

known to become prohibitively expensive if one tries to solve over a sufficiently long

time interval using large amounts of training data. Meng et al. (2020) develop a

Parareal PINN that parallelises a PINN solver, using smaller PINNs as the coarse

and fine solvers within the classic Parareal algorithm. The results are encouraging,

however, the test problems presented are very simple, converging in one or two

Parareal iterations and it is assumed that simplified ODEs/PDEs are available for

the coarse solver—which is not always the case in practical applications. Whereas

the Parareal PINN scheme uses Parareal to parallelise a PINN solver, we are more

interested in how PINNs could be used to accelerate convergence of the Parareal

scheme itself. In Ibrahim et al. (2023), a PINN is used in place of the coarse solver,

with the idea being that a pre-trained PINN is faster to evaluate (over short time

intervals) and provides more accurate solutions compared to a standard coarse solver.

Whilst reporting runtimes faster than Parareal, on the order of milliseconds, the

(offline) pre-training time of the PINN (which took 30 minutes using O(105) training

points) was not accounted for (as in the previous studies). This is, however, encour-

aging as the expensive pre-training could be justified in cases where one wishes to

solve a given IVP for many different initial conditions, saving overall computational

time—though this warrants further numerical investigation.

Most of the approaches discussed have replaced the coarse solver with a learning-

based method trained using the fine or PC solution data, with the aim of making

the coarse predictions in Parareal more accurate. This amounts to trying to learn

the nonlinear vector field generated by the fine solver F∆T , which we expect to be

more difficult (and perhaps requires more solution data) than trying to emulate

the correction F∆T − G∆T . This is because we expect the output length scale of
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F∆T − G∆T to be small, on the order of the difference between the local truncation

error of each solver, and therefore to vary smoothly with the input states. As reported

by Nguyen and Tsai (2022), we expect acquisition data to be most effective in training

the GP emulator, however, we will also investigate the effect of using legacy data

from prior simulations and random sampling on convergence and speedup. We will

also account for the serial costs that training and optimising the GP emulator will

have on the wallclock time and parallel speedup estimates of GParareal. Using the

GP emulator will also allow us to derive an error bound for GParareal solutions,

something more difficult to do when working with NNs which depend on the choices

of the numbers of neurons, layers, activation functions, and so on.

5.2 The algorithm

We are now ready to explain how GParareal works.

5.2.1 How it works

Before solving (2.1), we define a GP prior over the unknown “correction function”

F∆T − G∆T just like we did in Section 5.1.1. This function maps an initial value

xn ∈ U at time tn to the residual difference between F∆T (xn) and G∆T (xn) at time

tn+1. More formally, we write

F∆T − G∆T ∼ GP(m,κ), (5.8)

with mean function m : U → R and covariance kernel κ : U×U → R. Given the vectors

x,x′ ∈ UJ , the corresponding mean vector is denoted µ(x) = (m(xj))j=0,...,J−1 and

the covariance matrix K(x,x′) = (κ(xi, x
′
j))i,j=0,...,J−1. The correction term is

expected to be small, on the order of the difference between the accuracy of F∆T

and G∆T , hence we define a zero-mean process, i.e. m(x) = 0 ∀x ∈ U . We are free to

select any appropriate covariance kernel based on any prior knowledge of the solution

to (2.1), e.g. regularity/periodicity. However, assuming we have no information a

priori to simulation, we will select the SE kernel (5.2) 4. The kernel hyperparameters

denoting the length scales `2 and σ2 are referred to collectively in the vector θ and

need to be optimised during the simulation. Having initialised the GP emulator, the

algorithm proceeds as follows (see Algorithm 3 for pseudocode).

4Note that we did analyse the use of alternate Matern kernels for the IVPs tested, however, they
yielded significantly poorer performance, see Murphy (2022, Sec. 17.1.2).
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Iteration k = 0

Firstly, run G∆T sequentially from the exact initial value U0
0 , on a single processor,

to locate the coarse solutions

U0
n = G∆T (U0

n−1) for n = 1, . . . , N. (5.9)

Store these solutions in the vector x := (U0
0 , . . . , U

0
N−1)ᵀ for use in the GP emulator.

Iteration k = 1

Use F∆T to propagate the values in (5.9) on each time slice in parallel (using the N

processors) to obtain the following values at tn

F∆T (U0
n−1) for n = 1, . . . , N. (5.10)

At this stage, we diverge from the Parareal method. Given x, store the values of

F∆T − G∆T , using (5.9) and (5.10), in the vector

y :=
(
(F∆T − G∆T )(xn)

)ᵀ
n=0,...,N−1

. (5.11)

At this point, the inputs x and evaluations y are used to optimise the kernel hyperpa-

rameters θ via maximum likelihood estimation—see Section 5.2.2. Conditioning the

prior (5.8) on the acquisition data {x,y}, the GP posterior over (F∆T − G∆T )(x′),

where x′ ∈ U is some initial value in the state space, is given by

(F∆T − G∆T )(x′) | {x,y} ∼ N
(
µ̂(x′), K̂(x′, x′)

)
, (5.12)

where µ̂(x′) and K̂(x′, x′) are given by (5.5) and (5.6), respectively.

Now we wish to determine updated solutions U1
n at each time step. Given F∆T

has been run once, the exact solution is known at time t1. Specifically, at t0 we know

Uk0 = U0 ∀k > 0 and at t1 we know Uk1 = U1 = F∆T (U1
0 ) ∀k > 1. At t2, the exact

solution U2 = F∆T (U1
1 ) is unknown, hence we need to calculate its value without

running F∆T again. To do this, we re-write the exact solution using (5.7):

U1
2 = G∆T (U1

1 )︸ ︷︷ ︸
prediction

+ (F∆T − G∆T )(U1
1 )︸ ︷︷ ︸

correction

. (5.13)

Both terms in (5.13) are initially unknown, however, the prediction can be calculated

rapidly at low computational cost while the correction can be inferred using the GP

posterior (5.12) with x′ = U1
1 . Therefore, we obtain a Gaussian distribution over the
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Figure 5.2: Schematic of the first iteration of GParareal. The ‘exact’ solution over
[t0, t3] is shown in black, with the first coarse and fine (parallel) runs given in yellow
and blue respectively. Solid bars represent the residual between these solutions (5.11).
The predictions, i.e. the second coarse runs, are shown in red and the corresponding
corrections from the GP emulator are represented by the dashed bars. The updated
solutions (5.15) at the end of the iteration are represented by the red dots. Note the
black and blue lines in [t0.t1] should overlap but have been shown not to for clarity.

solution

U1
2 ∼ N

(
G∆T (U1

1 ) + µ̂(U1
1 ), K̂(U1

1 , U
1
1 )
)
, (5.14)

with variance stemming from uncertainty in the GP emulator. Repeating this process

to determine a distribution for the solution at t3 by attempting to propagate the

random variable U1
2 using G∆T is computationally infeasible for nonlinear IVPs. To

tackle this and be able to propagate U1
2 , we approximate the distribution by taking

its mean value, setting

U1
2 = G∆T (U1

1 ) + µ̂(U1
1 ).

This approximation is a convenient way of minimising computational cost in the

PC step, at a price of ignoring uncertainty in the GP emulator—we discuss possible

alternatives in Section 5.5.

The update process, applying (5.7) and then approximating the Gaussian distri-

bution by taking its expectation, is repeated sequentially for later tn, yielding the

approximate solutions

U1
n = G∆T (U1

n−1) + µ̂(U1
n−1) for n = 3, . . . , N. (5.15)

This process is illustrated in Figure 5.2. Finally, we impose stopping criteria (2.10),

identifying which U1
n for n 6 I have converged. Using the same stopping criteria as

Parareal will allow us to compare the performance of both algorithms in Section 5.3.
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Iteration k > 2

If the stopping criteria is not met, i.e. I < N , we can iteratively update any

unconverged solutions by re-applying the previous steps. This means calculating

F∆T (Uk−1
n ), n = I, . . . , N − 1, in parallel and then storing new evaluations ŷ =(

(F∆T − G∆T )(Uk−1
n )

)ᵀ
n=I,...,N−1

, with corresponding inputs x̂ = (Uk−1
I , . . . , Uk−1

N−1)ᵀ.

Hyperparameters are then re-optimised and the GP is re-conditioned using all prior

acquisition data, i.e. x = [x; x̂] and y = [y; ŷ], generating an updated posterior5.

The update rule is then applied such that we obtain

Ukn = G∆T (Ukn−1) + µ̂(Ukn−1) for n = I + 2, . . . , N.

Once I = N , the solution, the number of iterations k taken to converge, and the

acquisition data x and y are returned. Recall that the acquisition data can be used

in future GParareal simulations (as “legacy data”) to provide the GP emulator with

more data and therefore exploit additional speedup—this will be demonstrated in

Section 5.3. For completeness, we fully define the GParareal scheme in the same way

as Parareal and SParareal.

Definition 5.1 (GParareal). For two numerical flow maps F∆T and G∆T (described

in Section 2.2), and the GP emulator described before, the GParareal scheme is given

by

U0
0 = u0, (5.16a)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (5.16b)

Uk+1
n+1 = G∆T (Uk+1

n ) + µ̂(Uk+1
n ) 0 6 k 6 n 6 N − 1. (5.16c)

5.2.2 Kernel hyperparameter optimisation

The hyperparameters θ of the kernel κ will need to be optimised in light of the

acquisition data y (and corresponding input data x). We optimise each element of

θ such that it maximises its (log) marginal likelihood (Rasmussen, 2004). To do

this, first define g(x) := (F∆T − G∆T )(x) and g := (g(xj))
ᵀ
j=0,...,N−1. Recall N is the

length of x (and y) during the first iteration. This length will increase as more data

is accumulated each iteration but the following optimisation process will remain the

same. Given the evaluations y are noise-free, the likelihood of obtaining such data is

p(y|g,x,θ) = δ(y − g), where δ(·) is the multidimensional Dirac delta function. All

this says is that our emulator is interpolating the acquisition data, i.e. µ̂(xj) = yj

5Here, [a; b] denotes the vertical concatenation of column vectors a and b.

93



Chapter 5. GParareal I: a learning-based time-parallel algorithm

Algorithm 3: GParareal

Initialise: Set counters k = I = 0 and define Ukn , Ûkn and Ũkn as the refined,
coarse, and fine solutions at the nth time step and kth iteration
respectively (note Uk0 = Ûk0 = Ũk0 = u0 ∀k). If known, initialise
any legacy F∆T − G∆T input data x, output data y, and
hyperparameters θ.

%Calculate initial values at each tn by running G∆T serially.

1 for n = 1 to N do

2 Û0
n = G∆T (Û0

n−1);

3 U0
n = Û0

n;

4 end
5 for k = 1 to N do

%Propagate refined solutions (from iteration k − 1) on

unconverged time slices by running F∆T in parallel.

6 for n = I + 1 to N do

7 Ũk−1
n = F∆T (Uk−1

n−1);
8 end
9 I = I + 1;

10 UkI = Ũk−1
I for all k ; %copy converged solution at tI to future k.

11 x = append(x, (Uk−1
I , . . . , Uk−1

N−1)T) ; %collect new input data.

12 y = append(y, (Ũk−1
I+1 − Û

k−1
I+1 , . . . , Ũ

k−1
N − Ûk−1

N )T) ; %collect new

output data.

13 θ = GPoptimise(x,y,θ) ; %optimise hyperparameters.

%Propagate refined solution (at iteration k) with G∆T, then

correct using the expected value of the GP prediction (5.12)
(this step cannot be carried out in parallel).

14 for n = I + 1 to N do
15 x? = Ukn−1;

16 Ûkn = G∆T (x?);
17 y? = GPpredict(x,y,θ, x?) ; %returns Gaussian random variable

18 Ukn = Ûkn + E[y?];

19 end
%Evaluate stopping criterion, saving all solutions up to tI.

20 I = max
n∈{I,...,N}

|Uki − U
k−1
i | < ε ∀i < n;

21 if I = N then
22 return k, Uk

· , x, y, θ ; %if tolerance met, stop.

23 end

24 end
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and K̂(xj , xj) = 0. The marginal likelihood, given x and θ, is therefore

p(y|x,θ) =

∫
p(y|g,x,θ)︸ ︷︷ ︸

likelihood

p(g|x,θ)︸ ︷︷ ︸
prior

dg

=

∫
δ(y − g)N (g|0,K(x,x)) dg = N (y|0,K(x,x)),

where N (y|0,K(x,x)) denotes the probability density of a multivariate Gaussian

distribution (3.6) evaluated at y, with mean vector 0 and covariance matrix K(x,x)

that depends on θ (recall (5.2)). Taking the logarithm, we want to maximise the

log-marginal likelihood, i.e. find

arg max
θ

[
log p(y|x,θ)

]
= arg max

θ

[
−1

2
yT[K(x,x)]−1y−1

2
log |K(x,x)|−N

2
log 2π

]
,

where |K(x,x)| is the determinant of K(x,x). The hyperparameters in θ can be

estimated numerically using any preferred iterative optimisation routine. Estimation

is carried out once per iteration and is initialised using hyperparameters from the

prior iteration. Given this is a serial computation, we can save computational runtime

in later iterations by stopping the optimisation process when the hyperparameters

do not change significantly between iterations—this is implemented in the numerical

experiments in Section 5.3.

5.2.3 Computational complexity

The complexity of GParareal can be calculated similarly to that of Parareal—refer

back to Section 2.2.3 for notation. In GParareal, an additional cost is incurred when

(serially) conditioning the emulator on acquisition/legacy data and optimising the

hyperparameters. During the kth iteration, up to kN evaluations of F∆T − G∆T

have been collected, hence standard cubic complexity GP conditioning scales like

O(k3N3) in terms of FLOPs (similarly, if not higher for the hyperparameters).

Given a fixed number of time slices N , let TGP(k) represent the total wallclock

time taken to condition and optimise hyperparameters of the GP (using up to

kN observations) at iteration k. Note this is a strictly increasing function of k

(assuming the hyperparameter optimisation is not stopped beyond some iteration

to save compute time). Ignoring negligible serial overheads, we can write down the

total wallclock time for GParareal as

TGPara ≈ NTG +
k∑
i=1

(
TF + (N − i)TG + TGP(i)

)
= kTF + (k + 1)

(
N − k

2

)
TG + TGP, (5.17)
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where TGP :=
∑k

i=1 TGP(i). The approximate parallel speedup is then given by

SGPara ≈
[
k

N
+ (k + 1)

(
1− k

2N

)
TG
TF

+
1

N

TGP

TF

]−1

. (5.18)

For completeness, the parallel efficiency is given by

EGPara ≈
SGPara

N
=

[
k + (k + 1)

(
N − k

2

)TG
TF

+
TGP

TF

]−1

. (5.19)

Therefore, in addition to the Parareal requirements that k � N and TG � TF ,

GParareal requires that TGP � TF in order to maximise parallel speedup. If this is

the case, the complexity of GParareal is approximately the same as Parareal.

This simple analysis suggests that if k and/or N are large, then the cost of the

emulation may begin to dominate that of the fine solver, limiting the parallel speedup

from GParareal—see Section 5.3 for an example of this effect. This, however, need not

hinder the usability of GParareal for a number of reasons. Firstly, time-parallelisation

is typically deployed on problems where additional parallel speedup is needed beyond

that achieved by traditional domain decomposition, i.e. on spatio-temporal PDEs.

This means that if P processors are required for the space-parallel computations of

the PDE and N processors for the time-parallel computations, then NP processors

are required in total. For moderate to large values of P , only leftover HPC resources

are available to exploit time-parallelism and so N typically cannot be chosen very

large, somewhat limiting how large TGP will be. Secondly, in the scenario that both

TGP and TF are small, one does not need to use a time-parallel method in the first

place, as F∆T can simply be run serially in this case. Thirdly, if both TGP and TF

are large or of a similar order, then one can reduce TGP by reducing the number of

time slices N , thereby increasing TF at the same time. We will assess these ideas in

Section 5.3.

Whilst there is no way to control the final value of k obtained by either Parareal or

GParareal, there are ways of reducing TGP using more efficient non-cubic complexity,

emulation methods. For example, one could make use of sparse GPs, parallel matrix

inversion methods, or sparse approximate linear algebra techniques (Schäfer et al.,

2021) to reduce the cost of evaluating the inverse kernel matrix [K(x,x)]−1. One

could also reduce TGP by clustering the input data points and training ‘local’ GPs in

parallel (Snelson and Ghahramani, 2007) or instead use inducing points to average

over input data points that are located close together in state space (Quiñonero

Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006)—see Murphy (2023)

for additional methods. To reduce the cost of hyperparameter optimisation, one may

deploy parallel optimisation routines if available or, as we implement in Section 5.3,

stop the optimisation once additional data no longer improves the hyperparameter

estimates.
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5.2.4 Error bound analysis

In this section, we are interested in analysing the absolute error

ekn := |Un − Ukn |, (5.20)

between the exact solution and the GParareal solution at iteration k and time tn.

We show that this error has an upper bound proportional to the fill distance of the

dataset at iteration k (defined below). To do this, we now denote the input dataset at

iteration k as xk rather than x (because the dataset size strictly increases with each

iteration of GParareal) and, similarly, denote the output dataset y as yk. We will

make use of the same assumptions on the solvers F∆T and G∆T that were introduced

in the SParareal error analysis and a known result on the consistency of the GP

posterior mean µ̂ (5.5) to the true correction function g = F∆T − G∆T .

Preparatory assumptions and results

We begin by recalling the assumptions made on the solvers from Section 4.2. Namely,

that F∆T is assumed to be the exact solver (Assumption 4.1) and G∆T is a one-step

method with uniform local truncation error O(∆T p+1) (Assumption 4.2) and a

Lipschitz condition (Assumption 4.3).

Next, we define the concepts required to state a result on the consistency of the

GP posterior mean—definitions taken from Stuart and Teckentrup (2018). Firstly,

define the fill distance hxk as the largest smallest distance between any point v ∈ U
and any point xi ∈ xk, i.e.

hxk := sup
v∈U

inf
xi∈xk

|v − xi|.

It should be clear that each xi ∈ xk is also contained in U with the intuition being

that hxk is the maximum distance any point v ∈ U can be from one in xk. In

Figure 5.3, we illustrate the fill distance over a unit interval that contains data points

xk = (x1, . . . , x5)ᵀ. If we were to obtain a new data point x6 located somewhere in

the interval [0.1, 0.5], hxk would decrease, however, if located outside of [0.1, 0.5] it

would remain unchanged (i.e. hxk is non-increasing as more data points are added).

Figure 5.3: Illustration of the fill distance in one dimension where U = [0, 1] ⊂ R and
xk = (0.1, 0.5, 0.6, 0.8, 1)ᵀ. The fill distance is hxk = 0.2.
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Secondly, we define a Hilbert space Hκ(U) of functions g : U → R, with inner

product 〈·, ·〉Hκ(U), as a reproducing kernel Hilbert space (RKHS) corresponding to a

symmetric, positive-definite kernel κ : U × U → R if

i. ∀v ∈ U , the kernel κ(v, v′) ∈ Hκ(U) as a function of its second argument,

ii. ∀v ∈ U and g ∈ Hκ(U), the inner product 〈g, κ(v, ·)〉Hκ(U) = g(v) (reproducing

property).

A Hilbert space can be loosely thought of as a complete vector space U equipped

with an inner product that defines a distance function. Less formally, the definition

of the RKHS means that if two functions in the RKHS are “close” under a norm,

then they are “close” point-wise as well. This is key to the following result on GP

posterior mean consistency, adapted from Wendland (2004, Theorem 11.14), where

it is assumed that the function we are trying to emulate (g) is in the RKHS Hκ(U)

where our kernel also exists.

Theorem 5.2 (GP posterior mean consistency). Suppose U ⊂ R is a bounded

interval and let κ be the SE kernel. Denote the GP posterior mean, built using xk,

yk, and κ (5.5) as µ̂ and the function being emulated as g ∈ Hκ(U). Then, for every

τ ∈ N, there exist constants h0(τ) and Cτ > 0 such that

|g(v)− µ̂(v)| 6 Cτh
τ
xk |g|Hκ(U) ∀v ∈ U ,

provided that hxk 6 h0(τ). Note that |g|2Hκ(U) = 〈g, g〉Hκ(U).

This result states that error of the GP posterior mean is proportional to the fill

distance hxk (which ideally is small). The parameter τ can be chosen arbitrarily,

however, if choosing a larger τ , the constants Cτ and h0(τ) may increase and decrease,

respectively—see Wendland (2004, Section 11.14) for further discussion. Also see

Wendland (2004, Theorem 11.14) for a more general version of this result that holds

for derivatives and when U ⊂ Rd. It should be noted that Theorem 5.2 only holds

when g ∈ Hκ(U), i.e. the function of interest lies within the RKHS of the SE kernel.

If this is not the case, convergence issues may arise (see Karvonen (2022); Karvonen

and Oates (2022)) and one would need to choose an alternative kernel function that

reflects more of what is known about the structure of g. For consistency results

involving Matérn kernels, see Stuart and Teckentrup (2018).

Error bound for GParareal solutions

Theorem 5.3 (GParareal error bound). Suppose the GParareal scheme (5.16) satis-

fies Assumptions 4.1, 4.2, and 4.3, and that the conditions required for Theorem 5.2

hold. Then, the absolute error (5.20) of the GParareal solution to the autonomous
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scalar ODE, i.e. f(t,u(t)) := f(u(t)) in (2.1), at iteration k and time tn satisfies

ekn 6


Λk

n−(k+1)∑
i=0

Ai 1 6 k < n 6 N,

0 0 6 n 6 k 6 N.

where A = C1∆T p+1 + LG and Λk = Cτh
τ
xk
|g|Hκ(U).

Proof. First, consider the case 0 6 n 6 k 6 N . For n = 0, recall that Uk0 = U0 ∀k >

0 by definition, hence ek0 = 0 ∀k > 0. For n = 1, we seek U1
1 = F∆T (U1

0 ) which

we in fact know from applying F∆T to U0
0 during the prior iteration (i.e. k = 0).

Therefore, we have that

U1
1 = F∆T (U1

0 ) = F∆T (U0
0 ) = F∆T (U0) = U1 ⇒ Uk1 = U1 ∀k > 1

⇒ ek1 = 0 ∀k > 1.

We can repeat this process up to n = N to show that

UNN = F∆T (UNN−1) = F∆T (UN−1
N−1 ) = F∆T (UN−1) = UN ⇒ UkN = UN ∀k > N

⇒ ekN = 0 ∀k > N.

Now, consider the case 1 6 k < n 6 N . Using the update rule (5.16c), that F∆T is

the exact solver (4.5), and adding and subtracting the terms g(Ukn) and G∆T (Un),

we can write

ekn+1 = |Un+1 − Ukn+1| = |F∆T (Un)−
(
G∆T (Ukn) + µ̂(Ukn)

)
|

= |F∆T (Un)−
(
G∆T (Ukn) + µ̂(Ukn)

)
± g(Ukn)± G∆T (Un)|.

Applying the triangle inequality and the definition of g, we obtain

ekn+1 6 |
(
F∆T (Un)− G∆T (Un)

)
−
(
F∆T (Ukn)− G∆T (Ukn)

)
|

+ |G∆T (Un)− G∆T (Ukn)|+ |g(Ukn)− µ̂(Ukn)|.

On the right hand side, the first term can be bounded using (4.7), the second by

(4.8), and the third using Theorem 5.2, yielding the recursion

ekn+1 6 Aekn + Λk,

where A = C1∆T p+1 + LG and Λk = Cτh
τ
xk
|g|Hκ(U). This recursion can be solved

using the initial condition ekn = 0 ∀k > n to obtain the desired result.

Theorem 5.3 shows that the error is proportional to the fill distance at iteration
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k and that GParareal will recover the exact solution at time tn after k = n iterations.

This result is rather general in the sense that we consider the fill distance with respect

to the entire space U ⊂ R, whereas in reality we should measure the fill distance

with respect to a moderately sized compact interval V ⊂ U in which the solution u(t)

lies ∀t ∈ [t0, T ]. Essentially, the accuracy of the GP posterior mean outside of V is

inconsequential to the GParareal scheme because the mean will never be evaluated

outside of V. Also note, the result will generalise for GParareal applied to systems

of ODEs by using norms and the generalised version of Theorem 5.2 in Wendland

(2004). In the multivariate case (d > 1), however, a larger number of acquisition data

points will be required to ensure the fill distance remains small. This is something

we will need to bear in mind when applying GParareal to large systems of ODEs—a

possible remedy for this situation is explored in Section 5.4.

5.2.5 Generalisation to ODE systems

The methodology in Section 5.2.1 can be generalised to solve systems of d autonomous

ODEs. Accordingly, the correction term we wish to emulate would be vector-valued,

i.e. U ⊂ Rd, hence we require a vector-valued (or multi-output) GP, rather than a

scalar GP.

The simplest approach is to model each output of F∆T − G∆T independently,

whereby we use d scalar GPs (sharing the same vector-valued inputs in state space)

to emulate each output. This requires initialising d GP emulators, each with their

own covariance kernel κi (usually the same for consistency) and corresponding

hyperparameters θi—to be optimised independently using their own respective

observation datasets y(i), i = 1, . . . , d. In this case, the d GP emulators can be

optimised independently of one another and so we make use of the idle processors to

carry out these computations in an embarrassingly parallel fashion. This reduces the

optimisation costs for d ODEs by a factor of d each iteration. We adopt this simple

approach in our implementation of GParareal, however, it should be noted that this

limits us to only being able to solve systems of d 6 N ODEs, as we only have N

processors available.

The more complex approach is to jointly emulate the outputs of F∆T − G∆T by

modelling cross-covariances between outputs via the method of co-kriging (Cressie,

1993). A number of co-kriging techniques exist (see Álvarez et al. (2011) for a

brief overview), one of which is the linear model of coregionalisation that models

the joint, block-diagonal, covariance prior between multiple outputs using a linear

combination of the separate kernels κi. This is similar to when we considered

correlated randoms variables in SParareal. Testing revealed that using this method

did not improve performance enough (i.e. there was no reduction in k) to justify the

added computational complexity each iteration (results not reported). The d scalar

output GPs discussed before have complexity O(k3N3) whereas these multi-output
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GPs have complexity O(d3k3N3) (per iteration). Some applications may require

correlated output dimensions, hence we note the methodology here for any interested

readers.

As a final note, to solve nonautonomous systems of equations (2.1), there are two

possible approaches. One way is to include the time variable as an extra input to each

of the d scalar GPs—this requires a more carefully selected covariance kernel that

incorporates the time-dependence. The other way is to rewrite the d-dimensional

nonautonomous system as a system of d + 1 autonomous equations and solve as

described above—we do this in Section 5.3.3.

5.3 Numerical experiments: nonlinear ODEs

In this section, we present numerical experiments to compare the performance of

GParareal and Parareal on a number of low-dimensional nonlinear ODE systems,

namely the FitzHugh–Nagumo model, the chaotic Rössler system, a nonautonomous

system, and the double pendulum system.

For simplicity, F∆T and G∆T are chosen to be explicit RK methods of order

q, p ∈ {1, 2, 4, 8}, respectively (q > p). As before, NF and NG denote the number

of time steps each solver uses over [t0, T ]. For these experiments we built our own

cubic complexity GP emulator to highlight the effectiveness of GParareal using

standard out-the-box methods, postponing the implementation of more efficient and

sophisticated emulation methods to a future work. In the multivariate setting (recall

Section 5.2.5), we use a scalar output GP emulator (with isotropic SE covariance

kernel) to model each output dimension of F∆T − G∆T and assign each one its own

processor. Hyperparameter optimisation is carried out at each iteration, stopping

when the (maximal) absolute difference between hyperparameters at successive

iterations is smaller than 10−2.

5.3.1 FitzHugh–Nagumo model

In this experiment, we consider the FitzHugh–Nagumo (FHN) model (FitzHugh,

1961; Nagumo et al., 1962) given by

du1

dt
= c
(
u1 −

u3
1

3
+ u2

)
,

du2

dt
= −1

c
(u1 − a+ bu2), (5.21)

and parameters (a, b, c) = (0.2, 0.2, 3). We integrate (5.21) over t ∈ [0, 40], dividing

the interval into N = 40 slices, and set the tolerance for both GParareal and Parareal

to ε = 10−6. We use solvers G∆T = RK2 and F∆T = RK4 with NG = 160 and

NF = 1.6× 105 steps, respectively.

In Figure 5.4(a), we solve (5.21) with initial condition u0 = (−1, 1)ᵀ using

both algorithms. Observe that the accuracy of GParareal is of approximately the
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same order as the solution obtained using Parareal—when comparing both to the

serially obtained fine solution (Figure 5.4(b)). Note, however, that in Figure 5.4(c),

GParareal takes six fewer iterations to converge to these solutions than Parareal does.

As a result, GParareal locates a solution in faster wallclock time than Parareal, see

Figure 5.4(d), with an almost 5× speedup vs. the serial solver—over twice the 2.4×
speedup obtained by Parareal. Note that we increase NF to 1.6× 108 to ensure F∆T

is expensive to run and realise parallel speedup in Figure 5.4(d) (as both algorithms

require TG/TF � 1).

To compare the convergence of both methods more broadly, we solve the FHN

model (5.21) for a range of initial values. The heatmap in Figure 5.5(a) illustrates how

the convergence of Parareal is highly dependent, not just on the solvers in use, but

also the initial values at t = 0, taking anywhere from 10 to 15 iterations to converge.

(a) (b)

(c) (d)

Figure 5.4: Numerical results obtained solving the FHN model (5.21) for u0 = (−1, 1)ᵀ.
(a) Time-dependent solutions using the fine solver, GParareal, and Parareal—both
GParareal and Parareal plotted only at times t for clarity. (b) The corresponding
absolute errors between solutions from GParareal and Parareal vs. the fine solution.
(c) Maximum absolute errors (2.10) of each algorithm at successive iterations k until
tolerance ε = 10−6 is met. (d) Median wallclock times (taken over 5 runs) of both
algorithms against the number of processors (up to 40). The inset plot displays the
corresponding parallel speedup.
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(a) Parareal (b) GParareal

Figure 5.5: Heat maps displaying the number of iterations taken until convergence
k of (a) Parareal and (b) GParareal when solving the FHN model (5.21) for different
initial values u0 ∈ [−1.25, 1.25]2. Black boxes indicate where Parareal returned a NaN

value during simulation.

For some initial values, Parareal does not converge at all, with solutions blowing

up (returning NaN values) due to the poor accuracy of G∆T . In direct contrast, see

Figure 5.5(b), GParareal converges sooner and more uniformly due to the flexibility

provided by the emulator, taking just five or six iterations to reach tolerance for

all the initial values tested. This demonstrates how using an emulator can enable

convergence even when G∆T has poor accuracy.

Until now, GParareal simulations have been carried out using only acquisition data.

(a) (b)

Figure 5.6: Numerical simulations solving (5.21) for u0 = (0.75, 0.25)ᵀ using GParareal
with and without access to legacy data, i.e. F∆T − G∆T data obtained solving (5.21)
for u0 = (−1, 1)ᵀ. The Parareal simulation of the same problem is also shown for
comparison. (a) Maximum absolute errors (2.10) against iteration number k until
tolerance ε = 10−6 met. (b) Time-dependent errors of the corresponding numerical
solutions from each simulation vs. the fine solution.
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Figure 5.7: Heat map displaying the decrease in the number of iterations taken
until convergence of GParareal when solving (5.21) for different initial values u0 ∈
[−1.25, 1.25]2 with legacy data compared to without, i.e. compared to Figure 5.5(b).
Legacy data was obtained by solving (5.21) for u0 = (−1, 1)ᵀ.

In Figure 5.6, we demonstrate how GParareal can use both acquisition and legacy

data to converge in fewer iterations than without the legacy data. Approximately

kN = 5 × 40 = 200 legacy data points, obtained solving (5.21) for u0 = (−1, 1)ᵀ,

are stored and made available to the GP emulator when solving (5.21) for alternate

initial values u0 = (0.75, 0.25)ᵀ. In Figure 5.6(a), we can see that convergence

takes two fewer iterations with the legacy data than without. The accuracy of the

solutions obtained from these simulations is again shown to be of the order of the

Parareal solution in both cases—see Figure 5.6(b). Repeating the experiment from

Figure 5.5(b) with the same legacy data for a range of initial values we see that

k is either unchanged or improved in all cases, see Figure 5.7. It should be noted

that conditioning the GP and optimising hyperparameters using the legacy data

comes at extra (serial) computational cost and checks should be made to ensure that

TF � TGP. We will examine the effect of legacy data on GParareal runtimes in the

next section and more so in Chapter 6. These results illustrate that using GParareal

(with or without legacy data) we can solve and evaluate the dynamics of the FHN

model in significantly fewer iterations than Parareal.

5.3.2 Rössler system

Next we solve the Rössler system,

du1

dt
= −u2 − u3,

du2

dt
= u1 + âu2,

du3

dt
= b̂+ u3(u1 − ĉ), (5.22)

with parameters (â, b̂, ĉ) = (0.2, 0.2, 5.7) that cause the system to exhibit chaotic

behaviour (Rössler, 1976). We wish to integrate (5.22) over t ∈ [0, 340] with initial

values u0 = (0,−6.78, 0.02)ᵀ and solvers G∆T = RK1 and F∆T = RK4. The interval

is divided into N = 40 time slices, NG = 9× 104 coarse steps, and NF = 4.5× 108
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(a) (b)

(c) (d)

Figure 5.8: Numerical results obtained solving the Rössler system (5.22) over t ∈
[0, 340]. (a) Solutions from the fine solver, GParareal (with legacy data), and Parareal
plotted in the (u1, u2)-plane—both GParareal and Parareal plotted only at times t for
clarity. (b) The corresponding absolute errors between solutions from GParareal and
Parareal vs. the fine solution. (c) Maximum absolute errors (2.10) of each algorithm
at successive iterations k until tolerance ε = 10−6 is met. (d) Median wallclock times
(taken over 5 runs) of each simulation against the number of processors (up to 40). The
inset plot displays the corresponding parallel speedup.

fine steps. The tolerance is set to ε = 10−6.

In this experiment, rather than obtaining legacy data by solving (5.22) using

alternative initial values (as we did in Section 5.3.1), we instead generate the data by

integrating over a shorter time interval. This is particularly useful if we are unsure

how long to integrate our system for, i.e. to reach some long-time equilibrium state

or reveal certain dynamics of the system, as is the case in many real-world dynamical

systems. For example, systems that feature random noise may exhibit metastability,

in which trajectories spend (a long) time in certain states (regions of phase space)

before transitioning to another state (Grafke et al., 2017; Legoll et al., 2022). Such

rare metastability may not be revealed/observed until the system has been evolved

over a sufficiently large time interval. We propose integrating over a ‘short’ time

interval, assessing the relevant characteristics of the solution obtained, and then
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integrating over a longer time interval (using the legacy data) if required. Note

that to do this, all parameters in both simulations must remain the same, with the

exception of the time step widths—to ensure the legacy data is usable in the GP

emulator in the longer simulation. Suppose we solve (5.22) over t ∈ [0, 170], then we

need to reduce N , NG , and NF by a factor of two, i.e. use N (2) = N/2, N
(2)
G = NG/2,

and N
(2)
F = NF/2 in the shorter simulation.

The legacy simulation, integrating over [0, 170], takes nine iterations to converge

using GParareal (ten for Parareal), giving us approximately kN (2) = 9× 20 = 180

legacy evaluations of F∆T − G∆T (results not shown). Integrating (5.22) over the

full interval [0, 340], GParareal converges in four iterations sooner with the legacy

data than without—refer to Figure 5.8(c). In Figure 5.8(d) we can see that using the

legacy data achieves a higher numerical speedup (3.4×) compared to without (2.4×)

and compared to Parareal (1.6×). In Figure 5.8(a) we see the trajectories from

each simulation converging toward the Rössler attractor and Figure 5.8(b) illustrates

GParareal retaining a similar numerical accuracy to Parareal with and without the

legacy data. Note the steadily increasing errors for both algorithms is due to the

chaotic nature of the Rössler system.

5.3.3 Nonautonomous system

Next, we consider a nonautonomous system of ODEs to demonstrate how GParareal

handles explicit time dependence. We solve

du1

dt
= −u2 + u1

( t

500
− u2

1 − u2
2

)
,

du2

dt
= u1 + u2

( t

500
− u2

1 − u2
2

)
, (5.23)

over t ∈ [−20, 500]—adapted from Trefethen et al. (2017). As described in Sec-

tion 5.2.5, we transform this two-dimensional nonautonomous system into a three-

dimensional autonomous system by introducing an additional variable u3(t) = t,

where du3/dt = 1. Given that we know u3(t) explicitly, the third dimension of

F∆T − G∆T need not be modelled with a GP. However, given the GPs are run in

parallel anyway, this does not add to the cost of running GParareal.

We select solvers G∆T = RK1 and F∆T = RK8 with NG = 2048 and NF =

5.12 × 105 steps, respectively. We use N = 32 time slices, initial condition u0 =

(0.1, 0.1,−20)ᵀ, and a stopping tolerance of ε = 10−6. In Figure 5.9, we plot the

solutions and corresponding errors generated by each of the solvers over time. Again,

the results illustrate good convergence to the fine solver solution, with GParareal

taking 10 iterations to locate the solution and Parareal taking 20. We suspect that

the superior performance of GParareal is partially due to the almost periodic nature

of the solutions in Figure 5.9(a), enabling the emulator to reproduce the dynamics of

F∆T − G∆T quite well.

Next, we run a strong scaling experiment to measure the effect of increasing the
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(a)
(b)

Figure 5.9: Numerical results obtained solving the nonautonomous system (5.23).
(a) Time-dependent solutions using the fine solver, GParareal, and Parareal—both
GParareal and Parareal plotted only at times t on [−20, 150] for clarity. (b) The
corresponding absolute errors between solutions from GParareal and Parareal vs. the
fine solution, having converged after 10 and 20 iterations, respectively.

number of time slices N (and hence processors) on convergence, wallclock time, and

speedup—see Table 5.1. To do this, we increase NF to 5.12 × 1010, so that F∆T

is sufficiently expensive to observe speedup. We observe a good match between all

numerical and theoretical results for both Parareal and GParareal—this is depicted

in Figure 5.10. Firstly, notice that kpara increases with N whilst kGPara remains

largely unaffected, leading to speedups for GParareal being roughly 2× to 4× that of

(a) (b)

Figure 5.10: Strong scaling results obtained solving the nonautonomous system (5.23)
for N ∈ {32, 64, 128, 256, 512}. (a) Wallclock times using the fine solver (dashed black),
GParareal (dashed blue), and Parareal (dashed red). Corresponding theoretical results
are given by the solid lines, calculated using (2.11) and (5.17), respectively. (b) The
corresponding speedup results using the same lines and colours—theoretical results
calculated using (2.12) and (5.18), respectively.
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Table 5.1: Numerical wallclock time, speedup, and efficiency results obtained solving
the nonautonomous system (5.23) for N ∈ {32, 64, 128, 256, 512} with (a) Parareal and
(b) GParareal. Theoretical results calculated using (2.11)–(2.13) and (5.17)–(5.19) are
shown in brackets. All timings are measured in seconds.

N kpara TG TF TGP Tserial Tpara Spara Epara

32 20 1.60E−4 4.23E3 — 1.35E5 8.92E4 (8.47E4) 1.52 (1.60) 0.05 (0.05)

64 31 9.80E−5 2.10E3 — 1.35E5 6.75E4 (6.52E4) 2.00 (2.06) 0.03 (0.03)

128 55 9.10E−5 1.06E3 — 1.35E5 6.47E4 (5.81E4) 2.09 (2.33) 0.02 (0.02)

256 99 6.90E−5 5.23E2 — 1.34E5 5.64E4 (5.17E4) 2.37 (2.59) 0.01 (0.01)

512 151 6.30E−5 2.62E2 — 1.34E5 4.42E4 (3.95E4) 3.03 (3.39) 0.01 (0.01)

(a) Parareal results

N kGPara TG TF TGP Tserial TGPara SGPara EGPara

32 10 1.60E−4 4.23E3 5.81 1.35E5 4.33E4 (4.23E4) 3.13 (3.20) 0.10 (0.10)

64 14 9.80E−5 2.10E3 24.74 1.35E5 3.20E4 (2.95E4) 4.21 (4.57) 0.07 (0.07)

128 16 9.10E−5 1.06E3 3.01E2 1.35E5 1.90E4 (1.72E4) 7.13 (7.86) 0.06 (0.06)

256 18 6.90E−5 5.23E2 1.24E3 1.34E5 1.17E4 (1.06E4) 11.42 (12.57) 0.04 (0.05)

512 15 6.30E−5 2.62E2 1.62E4 1.34E5 2.10E4 (2.02E4) 6.34 (6.65) 0.01 (0.01)

(b) GParareal results

Parareal. For both algorithms, the cost of TG and TF decreases as N increases (due to

fewer time steps per time slice), whilst TGP increases in GParareal (due to increasing

numbers of data points used to train the GP emulators in each simulation). Up to

N = 128, TGP < TF and so we observe increasing parallel speedup for GParareal. At

N = 256, however, there is a turning point where the cost of training the GP is 2.4

times larger than TF , meaning that speedup is severely restricted. This is exacerbated

further when using N = 512 processors, where TGP is now almost 62 times the size

of TF . Even though using the GP emulator massively helps reduce the number

of iterations k for every value of N (compared to Parareal), these results clearly

highlight the severe impact that the serial cost of the GP optimisation/conditioning

has on realisable parallel speedup from GParareal. In turn, this hinders the parallel

efficiency of the algorithm.

5.3.4 Double pendulum system

Consider now the double pendulum system: a simple pendulum of mass m, rod

length `, connected to another simple pendulum of equal mass m, rod length `, acting
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Figure 5.11: A schematic of the double pendulum system.

under gravity g (see Figure 5.11). Four ODEs govern the dynamics of this system:

du1

dt
= u3,

du2

dt
= u4,

du3

dt
=
−u2

3f1(u1, u2)− u2
4 sin(u1 − u2)− 2 sin(u1) + cos(u1 − u2) sin(u2)

f2(u1, u2)
,

du4

dt
=

2u2
3 sin(u1 − u2) + u2

4f1(u1, u2) + 2 cos(u1 − u2) sin(u1)− 2 sin(u2)

f2(u1, u2)
,

(5.24)

where f1(u1, u2) = sin(u1−u2) cos(u1−u2) and f2(u1, u2) = 2−cos2(u1−u2) (Danby,

1997). Note that m, `, and g have been scaled out of (5.24) by letting ` = g. The

variables u1 and u2 measure the angles between each pendulum and the vertical axis,

while u3 and u4 measure the corresponding angular velocities.

(a) (b)

Figure 5.12: Numerical results obtained solving the double pendulum system (5.24).
(a) Time-dependent solutions for u1 and u2 using the fine solver, GParareal, and
Parareal—both GParareal and Parareal plotted only at times t for clarity. Dashed lines
indicate “turning over” angles, at which either pendulum passes through an odd multiple
of π. (b) The corresponding absolute errors between solutions from GParareal and
Parareal vs. the fine solution, having converged after 23 and 22 iterations, respectively.
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(a) Parareal (b) GParareal

Figure 5.13: Heat maps displaying the number of iterations taken until convergence
k of (a) Parareal and (b) GParareal when solving the double pendulum system (5.24)
for different initial angles (u1(0), u2(0))ᵀ ∈ [−2.5, 2.5]2 and initial angular velocities
(u3(0), u4(0))ᵀ = (0, 0)ᵀ, i.e. the pendulums are released from rest. Black boxes indicate
where Parareal returned a NaN value during simulation.

For this experiment, we select solvers G∆T = RK1 and F∆T = RK8 with NG =

3072 and NF = 2.1504× 105 steps, respectively. We integrate over t ∈ [0, 80], using

N = 32 time slices with a stopping tolerance ε = 10−6. In Figure 5.12, we plot

solutions for u1 and u2 over time using initial conditions u0 = (2, 0.5, 0, 0)ᵀ, i.e.

the pendulums are positioned at some (positive) initial angles and released from

rest. Observe how both pendulums move chaotically, with the inner pendulum

(a) (b)

Figure 5.14: Strong scaling results obtained solving the double pendulum system
(5.24) for N ∈ {32, 64, 128, 256, 512}. (a) Wallclock times using the fine solver (dashed
black), GParareal (dashed blue), and Parareal (dashed red). Corresponding theoretical
results are given by the solid lines, calculated using (2.11) and (5.17), respectively. (b)
The corresponding speedup results using the same lines and colours—theoretical results
were calculated using (2.12) and (5.18), respectively.
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oscillating within [−π, π] and the outer pendulum oscillating between odd multiples

of π, “turning over” a number of times6. We attain good solution accuracy from

GParareal with respect to the fine solution with errors slowly increasing over time

due to the chaotic nature of the system, much like what was seen in the Rössler

experiments in Section 5.3.2. We plot k for various initial angles in Figure 5.13

to highlight the system’s sensitivity to initial conditions. For small initial angles,

GParareal converges sooner than Parareal, but for much larger angles both algorithms

use almost all of the 32 iterations to locate a solution (and in some cases, Parareal

does not return a solution).

In Table 5.2 and Figure 5.14, we again examine the strong scaling of both

algorithms. To do this, we increase the number of fine time steps to NF = 2.1504×
1010. We purposefully choose an initial condition (u0 above) for which both algorithms

converge in approximately the same number of iterations, so that we can directly

observe how the increasing GP cost affects the performance of GParareal for large

N . Under these circumstances, we can think of the wallclock time for GParareal as

(approximately) the wallclock time of Parareal plus the wallclock time of the GP

Table 5.2: Numerical wallclock time, speedup, and efficiency results obtained solving
the double pendulum system (5.24) for N ∈ {32, 64, 128, 256, 512} with (a) Parareal and
(b) GParareal. Theoretical results calculated using (2.11)–(2.13) and (5.17)–(5.19) are
shown in brackets. All timings are measured in seconds.

N kpara TG TF TGP Tserial Tpara Spara Epara

32 22 2.53E−4 5.75E3 — 1.84E5 1.31E5 (1.26E5) 1.41 (1.45) 0.04 (0.05)

64 21 1.46E−4 2.93E3 — 1.87E5 6.29E4 (6.14E4) 2.97 (3.05) 0.05 (0.05)

128 23 1.27E−4 1.46E3 — 1.86E5 3.85E4 (3.35E4) 4.84 (5.57) 0.04 (0.04)

256 21 9.10E−5 7.35E2 — 1.89E5 1.66E4 (1.55E4) 11.36 (12.19) 0.04 (0.05)

512 19 7.00E−5 3.69E2 — 1.89E5 7.58E3 (7.01E3) 24.90 (26.94) 0.05 (0.05)

(a) Parareal results

N kGPara TG TF TGP Tserial TGPara SGPara EGPara

32 21 2.53E−4 5.75E3 21.44 1.84E5 1.21E5 (1.21E5) 1.52 (1.52) 0.05 (0.05)

64 23 1.46E−4 2.93E3 35.22 1.87E5 7.00E4 (6.72E4) 2.67 (2.78) 0.04 (0.04)

128 23 1.27E−4 1.46E3 2.63E2 1.86E5 3.56E4 (3.36E4) 5.24 (5.52) 0.04 (0.04)

256 23 9.10E−5 7.35E2 1.87E3 1.89E5 2.04E4 (1.75E4) 9.24 (10.03) 0.04 (0.04)

512 22 7.00E−5 3.69E2 1.33E4 1.89E5 2.25E4 (1.04E4) 8.38 (8.83) 0.02 (0.02)

(b) GParareal results

6See code repository for an animation.
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conditioning/optimisation. For N 6 128, we observe that TGP < TF and so the

speedup of GParareal and Parareal are approximately the same. In these cases, using

GParareal is no more costly than using Parareal, with the additional benefit of being

able to re-use the acquisition data for a future simulation, if needed. For N > 256,

we begin to observe TGP > TF (or larger), so the numerical speedup of GParareal

begins to plateau. These results (and those in the prior section) make it clear that

including the learning costs within the PinT framework is of paramount importance

as they can have a huge impact on realisable parallel speedup. We will examine the

effect of TGP on final GParareal runtimes further in Chapter 6.

5.4 Improving convergence: GParareal + fallback

In Section 5.2.4, we derived an error bound (Theorem 5.3) for solutions obtained from

GParareal at a given iteration that was proportional to the fill distance of the dataset

hxk . We know that the fill distance may become large when there is insufficient

acquisition data available, an effect that is exacerbated when the dimension d is large.

Therefore when solving d-dimensional systems of ODEs, GParareal may require

increasingly large amounts of data to model F∆T −G∆T accurately and may therefore

take a large number of iterations to converge. The purpose of this section is to

investigate the behaviour of the posterior variance arising from the GP predictions

of F∆T − G∆T , which up until now has been ignored, and gives us an indication of

how accurate the emulators are as the amount of acquisition data increases, i.e. as k

increases. Intuitively, one would expect the posterior variance of the GP predictions

to be larger during early iterations of GParareal due to the lack of acquisition data

available (in the absence of any legacy data).

In the univariate setting (d = 1), GParareal queries the scalar-output GP emulator

for F∆T − G∆T at a number of input locations each iteration, obtaining a Gaussian

(a) ε = 10−5 (b) ε = 10−6 (c) ε = 10−7

Figure 5.15: MPSD at each iteration k in simulations of GParareal. Each panel shows
results when solving the Lorenz96 (E.1) with forcing F ∈ {1, 3, 5} (other parameters
given in Table 5.3) and different stopping tolerances: (a) ε = 10−5, (b) ε = 10−6, and
(c) ε = 10−7 (dashed black lines).
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Table 5.3: Parameters used to solve the Lorenz96 system (E.1) for different levels of
forcing F—each row corresponds to a different experiment. These parameters are used
in the simulations in Figures 5.15, 5.16, and 5.17.

F d [t0, T ] N NG NF G∆T F∆T

1 50 [0, 100] 50 5E3 1E5 RK1 RK8

3 50 [0, 100] 50 5E3 1E5 RK1 RK8

5 50 [0, 100] 50 1E4 1E5 RK2 RK8

posterior distribution with some mean and variance (recall (5.12)). At each iteration,

we will store the maximal posterior variance—in fact we will store its square root,

the maximal posterior standard deviation (MPSD). Given we are interested in the

multivariate setting (d > 1), the setup will be the same, except that we have d

independent emulators which return d MPSD values, again of which we take the

largest.

In Figure 5.15, we plot the MPSD against k (up until the stopping tolerance is met)

for the Lorenz96 system (E.1) using F ∈ {1, 3, 5} and d = 50 (refer to Appendix E for

details of the Lorenz96 system). The parameters used for the GParareal simulations

using different F are given in Table 5.3. Across the panels we decrease the stopping

tolerance ε (recall (2.10)) to highlight the behaviour of the MPSD when GParareal

stops. In the F = 1 and F = 3 cases, we can see that the MPSD consistently

decreases as more acquisition data is accumulated each iteration, with GParareal

stopping one or two iterations after it drops below ε. As expected, decreasing the

stopping tolerance makes it more difficult for GParareal to stop sooner—reflected by

the increased number of iterations required to stop in each panel. In the F = 5 cases,

we see that the emulators are struggling to accurately infer F∆T − G∆T until around

k = 15, with the MPSD remaining approximately constant. This suggests that

GParareal spends a lot of time “jumping around” state space looking for the correct

solution states. In the next section, we propose a remedy to avoid slow convergence

by making use of the GP posterior variance. In addition, all results showed that

GParareal will not stop iterating until the emulators are sufficiently accurate, i.e.

until the MPSD is smaller than ε, another property that we can exploit to accelerate

convergence7. Overall, the F = 5 cases highlight the need for the emulators to learn

F∆T − G∆T sufficiently quickly during early iterations to avoid slow convergence.

7Note that posterior variances will struggle to go below the pre-set “jitter” in the GP emulators.
The jitter is a constant added to the diagonal of the covariance matrix K(x,x) to ensure numerical
stability during inversion (typically via a Cholesky decomposition). If set too large, the jitter will
lead to large posterior variances and cause GParareal to struggle to reach the stopping tolerance
(the jitter is set to 10−14 in these experiments).
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5.4.1 The modification

To improve the slow convergence that occurs when the GPs are insufficiently trained,

we investigate the use of a Parareal “fallback” correction. The intuition is that when

the GP posterior variance at the input location of interest is deemed “too large” we

may expect the posterior mean of F∆T − G∆T to be a poor estimate of the exact

correction we need. In this scenario, the idea is to discard the GP posterior mean

and instead “fallback” and use the classic Parareal correction—similar to the idea

in SParareal where we chose the first “random” sample to be the classic Parareal

PC solution. We do not necessarily know whether the fallback will give us a “better”

correction than the GP posterior mean, however, the hope is that it will be useful

during earlier iterations of GParareal when we expect the GP to have poor accuracy

due to a lack of acquisition data.

At some iteration k, we query the (trained) GP emulator at input location Ukn ,

obtaining the Gaussian posterior

(F∆T − G∆T )(Ukn) | {xk,yk} ∼ N
(
µ̂(Ukn), K̂(Ukn , U

k
n)
)
.

We then use posterior mean µ̂(Ukn) (5.5) in the GParareal update (5.16c), ignoring

the posterior variance K̂(Ukn , U
k
n) (5.6), its estimate of uncertainty. The proposal is

to check, each time we query the GP, whether the corresponding variance is large,

i.e. check whether

K̂(Ukn , U
k
n) < ω2, (5.25)

for some pre-defined “switching” tolerance ω2 > 0. If the tolerance in (5.25) is met,

then we accept the GP posterior mean and carry out the update as usual in (5.16c).

If the tolerance is exceeded, however, we reject the posterior mean and instead use

the Parareal PC update (2.9c). This fallback correction is readily available as it is an

element of the dataset that has been used to train the GP, i.e. (F∆T −G∆T )(Ukn) ∈ yk.

Note that in the multivariate case (d > 1), the criterion in (5.25) is checked for each

output dimension of F∆T −G∆T (i.e for each of the d emulators) and so some output

dimensions may use the GP emulators and some may use the Parareal fallback.

This modified version of GParareal, henceforth referred to as “GParareal +

fallback”, enables the automatic switching between GP and Parareal corrections

depending on how well trained the GP emulator is at a given iteration. The value

of ω2, however, must be chosen a priori to simulation. If chosen too small, the GP

posterior means will always be rejected, meaning that we are essentially running

classic Parareal (at higher cost because of the GP training/optimisation). If chosen

too large, the GP corrections will always be accepted, meaning we are running

standard GParareal. Between these extremes should lie values of ω2 for which
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GParareal + fallback automatically switches between the two different corrections,

ideally converging in fewer iterations than standard GParareal. In this case, we would

expect more fallback corrections to be made during early iterations when limited

acquisition data is available to the GP emulator and more GP corrections during

later iterations once the emulator is sufficiently well trained. We will investigate this

numerically in the next section.

5.4.2 Numerical experiments

In this section, we test GParareal + fallback for various values of ω2 on the Lorenz96

system (E.1) with F ∈ {1, 5}, see Figure 5.16. In the F = 1 case, we observe (left

panels) that for small ω2 only fallback corrections are made (bottom left panel) and

so both Parareal and GParareal + fallback converge in k = 12 iterations as expected

(top left panel). As ω2 is increased, GParareal + fallback takes fewer iterations as an

(a) F = 1 (b) F = 5

Figure 5.16: Iterations until convergence k of Parareal and GParareal + fallback (top
row) and the corresponding fraction of corrections made using the fallback or the GP
emulators (bottom row) against varying ω2 when solving the Lorenz96 system (E.1)
with (a) F = 1 and (b) F = 5. Shaded areas correspond to which correction term has
been called in GParareal + fallback (red = fallback only, blue = GP emulators only,
and purple = a mixture).
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Figure 5.17: (a) MPSD at each iteration k in simulations of GParareal and GParareal +
fallback (ω2 = 10−6) when solving the Lorenz96 system (E.1) with the F = 5 parameters
in Table 5.3. The dashed black line indicates the stopping tolerance ε = 10−6. (b)
Fraction of corrections made by the Parareal fallback and the GP emulators each
iteration in the GParareal + fallback simulation. Shaded areas correspond to which
correction term has been called (red = fallback only, blue = GP emulators only, and
purple = a mixture).

increasing proportion of corrections are made by the GP emulators. Once ω2 hits 10−6,

all corrections are being made by the GP emulators and the iteration count flattens

off at k = 5. In this particular example, GParareal + fallback converges in fewer

iterations than Parareal (whenever the GP emulator is used), further demonstrating

the power of using the GP emulators within the PinT framework. The F = 5

case (right panels) highlights the benefit of the Parareal fallback more clearly. For

ω2 > 10−3, we see that no fallback corrections are made (standard GParareal) and

convergence occurs in k = 23 iterations, seven more than Parareal (k = 16). Between

10−15 < ω2 < 10−3, however, we observe a range of behaviour, converging optimally

in k = 13 iterations when ω2 = 10−6. This provides us with evidence that by using

GParareal in combination with the fallback corrections, convergence can occur in

fewer iterations than both standard GParareal and Parareal. There is clearly a

nonlinear relationship between k and ω2 and whilst this has only been shown for this

particular ODE system, the results certainly are encouraging.

Now let us focus on the F = 5 case and examine the behaviour of the MPSD when

running both GParareal and GParareal + fallback (with ω2 = 10−6) in Figure 5.17(a).

We see that by using the fallback corrections, the uncertainty in the GP emulators

decrease rapidly after 9 iterations compared to 18 without, reaching tolerance much

sooner. We can see this process in effect more clearly in Figure 5.17(b), where during

early iterations most of the corrections are carried out using the fallback with the

GP emulators taking over after iteration k = 8 (when sufficient acquisition data

is available). The fallback correction seems to have helped reduce the number of

iterations spent exploring the state space as we mentioned before.
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Figure 5.18: Effect of using the additional stopping criterion (5.26) on final GParareal
solution accuracy. Shown are the maximal errors between solutions from GParareal vs.
the fine solution when solving the Lorenz96 system (E.1) with parameters from the first
row of Table 5.3.

As a final remark, recall that in each panel of Figure 5.15 and Figure 5.17(a) we

observed that GParareal does not stop iterating until the MPSD reaches the stopping

tolerance. This behaviour suggests that one could use this as an additional stopping

criterion in GParareal (and subsequently GParareal + fallback). If this were the case,

the algorithm would stop at iteration k if (i) all N time slices meet the standard

stopping criterion (2.10) or (ii) the MPSD from all of the emulators is below ε, i.e.

max
n

√
K̂(Ukn , U

k
n) < ε. (5.26)

The intuition is that the improvement in solution accuracy is minimal once the MPSD

is very small. This should save an extra iteration or two, which we know can be

extremely beneficial in terms of speedup, at the expense of a small decrease in solution

accuracy8. For example, when solving the Lorenz96 system (with parameters from

the first row of Table 5.3) we save a single iteration of GParareal using the additional

criterion in (5.26) at little cost in terms of solution accuracy (see Figure 5.18).

This series of experiments has shown that we can make use of the (previously

ignored) GP posterior variance (5.6) within GParareal. While it may seem counter-

intuitive to use a Parareal fallback correction given that GParareal was developed to

improve the corrections made by Parareal, we have seen that by using both types

of correction, convergence can occur in fewer iterations than both algorithms (at

no extra computational cost). In the situation that more (or perhaps all) of the

corrections are being made by the Parareal fallback, one may ask: why not just use

Parareal? The answer would be that by using GParareal + fallback, we combine the

power of having both corrections available (as seen in Figure 5.16(b)) and we can

8Retrospectively thinking, this type of stopping criterion could also be used within SParareal.
One could stop SParareal when the largest standard deviation from the sampling rule is smaller
than ε, as perturbations smaller than this are unlikely to improve the solution any further.
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reuse the acquisition data (plus legacy data if we have any) in a future simulation,

whereas with just Parareal we cannot do this.

The question remains, however, over how to select ω2 prior to simulation (without

knowing beforehand whether GParareal or Parareal converges in fewer iterations).

The results in Figure 5.16(b) suggest that to converge in the fewest iterations for

this particular IVP, one should choose ω2 ∈ [10−7, 10−5]. This is in fact where the

stopping tolerance lies (ε = 10−6) but is likely to just be coincidental. As a rule of

thumb, one could run GParareal + fallback initially with a large value of ω2 (e.g.

run standard GParareal), assess if convergence is slow, and then if necessary run it

again with ω2 ≈ ε to see whether convergence improves. This process is far from

rigorous and so further testing on different IVPs is needed to reveal a more robust

way of choosing ω2 for different types of problems.

5.5 Discussion and further work

In this chapter, we presented GParareal, a learning-based time-parallel algorithm that

iteratively locates a numerical solution to a system of ODEs (in parallel) by using a

GP emulator to infer the correction term F∆T − G∆T . The numerical experiments

reported in Section 5.3 demonstrate that GParareal performs favourably compared

to Parareal, converging in fewer iterations and achieving increased parallel speedup

for a number of low-dimensional nonlinear ODE systems. We also demonstrate

how GParareal can make use of legacy data, i.e. prior F∆T and G∆T data obtained

during a previous simulation of the same system (using different ICs or a shorter

time interval), to pre-train the emulator and converge even faster.

In Section 5.3.1, using just acquisition data obtained during simulation, GParareal

achieves an almost two-fold increase in speedup over Parareal when solving the FHN

model. Simulating over a range of initial values, GParareal converged in fewer than

half the iterations taken by Parareal and, in some cases, managed to converge when

the coarse solver was too poor for Parareal. When using legacy data, GParareal could

converge in even fewer iterations. Similar results were illustrated for the Rössler

system in Section 5.3.2 but with legacy data obtained from a prior simulation over a

shorter time interval—beneficial when one does not know how long to integrate a

system for. In Sections 5.3.3 and 5.3.4, GParareal was tested on a larger number of

processors (up to 512), verifying the theoretical computational complexity results

given in Section 5.2.3. These strong scaling experiments showed that the cost of

conditioning and optimising the GP emulator needs to be accounted for and also be

much smaller than the cost of running the fine solver in order to maximise speedup.

In all cases, the solutions generated by GParareal were of a numerical accuracy

comparable to those found using Parareal.

GParareal in its current form may, however, suffer from the curse of dimensionality
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in two ways. First, an increasing number of data points each iteration, O(kN),

increases the cost of conditioning and optimising the standard cubic complexity GP

we implemented—observed numerically in Sections 5.3.3 and 5.3.4. To aleviate this

problem, some of the non-standard (non-cubic complexity) GP emultaion techniques

mentioned in Section 5.2.3 could be implemented. Second, trying to emulate a

nonlinear d-dimensional function F∆T − G∆T is difficult if insufficiently many data

points are available to the emulator. To tackle this issue, we proposed a modification

to GParareal (in Section 5.4) that makes use of a Parareal fallback (instead of the GP

posterior mean) when the GP posterior variance is deemed too large, i.e. greater than

some switching tolerance ω2 > 0. Numerical experiments showed that during early

iterations, the Parareal fallback was used more frequently (when the GP emulators

had insufficient acquisition data) while the GP emulator corrections were made more

frequently during later iterations (when enough acquisition data was available). The

modification was observed to be most useful in situations where (standard) GParareal

took more iterations to converge than Parareal, however, choosing ω2 remains an

open problem.

Alternatively, one may tackle the dimensionality issue by generating more acqui-

sition data with additional F∆T and G∆T runs (in parallel) using the idle processors—

this should come at little to no extra computational cost (note that training costs

would increase each iteration). Another option could be to use legacy data generated

by evaluating F∆T − G∆T at specific input locations, chosen by an appropriate

space-filling design (e.g. Latin hypercube sampling) that satisfies certain fill distance

requirements in the state space—something we will do in Chapter 6. However, as

discussed in Section 5.2.4, the accuracy of the GP emulator (and therefore GParareal,

see Theorem 5.3) is strongly controlled by the fill distance, which is generally difficult

to restrict when d is large (even when large datasets are available). A final option

could be to consider dimensionality reduction techniques (e.g. principle component

analysis) and instead project the acquisition/legacy datasets onto a lower dimensional

space from which the emulation may be easier.

In equation (5.14), we approximate a Gaussian distribution by taking its expected

value, ignoring uncertainty in the GP posterior for F∆T−G∆T . In this setting, the GP

emulator is used to interpolate the F∆T − G∆T data, hence it is perfectly acceptable

to swap it out for any other sufficiently accurate interpolation method, e.g. kernel

ridge regression (Kanagawa et al., 2018). One alternative to approximating (5.14)

by its expected value could be to draw a random sample instead. This would yield a

sampling-based PinT scheme that would return a stochastic solution to the ODE,

much like SParareal. It is unclear how this algorithm would perform vs. Parareal (or

even SParareal), however, it could still make use of legacy data and perhaps generate a

measure of uncertainty over the solution following successive independent simulations.

Even though GParareal in its current form does not return a probabilistic solution
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to the IVP (2.1), we believe that it constitutes a positive step in this direction. In

the next chapter, we will push GParareal to its limits by investigating how well it

can perform when solving PDE problems.
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Chapter 6

GParareal II: application to

PDEs

Overview

Modelling complex real-world systems typically involves solving systems of PDEs

which evolve in both space and time. PDEs are typically re-written as large systems

of ODEs (2.1) using a variety of different spatial discretisation schemes (e.g. finite

difference, element, and volume methods) that have varying degrees of accuracy

and may have certain desirable properties for given systems (e.g. stability). In

this chapter, we continue to investigate the performance of GParareal by solving

PDE problems of increasing size d. Our main focus is to determine to what extent

GParareal suffers from some of the issues (e.g. high GP emulator runtimes) discussed

and observed in Chapter 5. For GParareal to be able to solve real-world problems we

need to understand and quantify the scale of these limitations and propose options

to mitigate some of the more negative effects.

Before diving into the numerical experiments, we briefly mention the solution

of linear IVPs in Section 6.1 and discuss why we do not consider solving them

with GParareal. In Section 6.2, we solve some nonlinear PDEs, applying standard

GParareal (without the fallback correction) to the one-dimensional viscous Burgers’

equation and the two-dimensional FitzHugh–Nagumo (2D FHN) system. For Burgers’

equation we analyse the performance of GParareal when solving for different initial

conditions and when using different types of legacy data, measuring the impact

that GP training/querying costs have on realisable speedup. In light of these

experiments, we propose storing Cholesky decompositions of covariance matrices

following hyperparameter optimisation, resulting in a significant reduction in GP

querying time. In the 2D FHN experiments, we increase the number of spatial

discretisation points and observe that GParareal converges in fewer iterations than

Parareal in almost all cases. However, the GP emulation costs take up a significant
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proportion of the GParareal runtime, leading to severe speedup degradation. To

mitigate these effects, we optimise GParareal further by pre-computing distance

matrices in the kernel evaluations. We conclude by briefly discussing the impact of

these improvements, ready for a full and thorough evaluation of our probabilistic

PinT algorithms in Chapter 7.

6.1 Some remarks on linear PDEs

Having overlooked linear problems in Chapter 5, we should point out that when the

vector field in (2.1) is linear, we do not need to use a GP to emulate the correction

term in GParareal because it is simply a linear operator. By modifying GParareal,

we could learn this linear operator directly (using only acquisition data from the first

iteration) and solve linear IVPs in one iteration, however, this is not necessary.

As mentioned before, when spatially discretising a linear (autonomous) PDE,

we obtain a system of ODEs (4.26), where Q is typically a large (depending on the

number of spatial points) and possibly sparse real matrix. We know that this system

has an analytical solution u(t) = u(t0)eQ(t−t0) which requires the evaluation of the

matrix exponential eQ(t−t0) =
∑∞

i=0(Q(t − t0))i/i!. To find the solution at evenly-

spaced time points t = (t0, . . . , tN ), one can simply compute the matrix exponential

eQ∆T once and then apply it serially (via matrix multiplication) to the previous

state, i.e. one can then rapidly evaluate u(tn+1) = u(tn)eQ∆T . To calculate the

matrix exponential one can use Krylov subspace methods, the scaling and squaring

method (Higham, 2005) or Padé approximations (Arioli et al., 1996), among others.

For particularly large systems, the multiplication of the matrix exponential and the

previous state can also be parallelised. This approach of solving linear autonomous

PDEs yields very high parallel efficiencies and is more accurate than using iterative

PinT methods such as Parareal and GParareal.

For inhomogeneous nonautonomous linear IVPs, e.g. f(t,u(t)) := Qu(t) + h(t)

(where h(t) is a difficult-to-integrate source term), Gander and Güttel (2013) propose

using the ParaExp algorithm. ParaExp exploits the fact that the homogeneous term

Qu(t) can be integrated rapidly using the matrix exponential method suggested

above, whilst the inhomogeneous part h(t) is more costly and therefore parallelisable.

This non-iterative method can achieve parallel efficiencies in excess of 0.84 for both

diffusive and non-diffusive problems. In addition, they discuss other methods for

solving this problem as well as the homogeneous autonomous problem discussed

before. Given that these methods are already highly efficient and accurate, our focus

will remain on solving nonlinear IVPs with GParareal.
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6.2 Numerical experiments: nonlinear PDEs

We now turn our attention back to GParareal, assessing its performance when solving

nonlinear PDEs.

6.2.1 One-dimensional viscous Burgers’ equation

We begin our experiments by solving the viscous Burgers’ equation

PDE vt = νvxx − vvx (x, t) ∈ (−L,L)× (t0, T ]

IC v(x, t0) = v0(x) x ∈ [−L,L]

BCs v(−L, t) = v(L, t)
t ∈ [t0, T ]

(6.1)

vx(−L, t) = vx(L, t)

for v(x, t), where ν is the diffusion coefficient. We discretise the spatial domain

using d + 1 equally spaced spatial points xj+1 = xj + ∆x where ∆x = 2L/d (for

j = 0, . . . , d). Writing uj(t) := v(xj , t), the semi-discretised problem is then given by

du

dt
= νD(2)

xxu− u ◦ (D(2)
x u), t ∈ (t0, T ],

where

D(2)
xx =

1

(∆x)2



−2 1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 1 −2


, D(2)

x =
1

2∆x



0 1 −1

−1 0 1

. . .
. . .

. . .

−1 0 1

1 −1 0


, (6.2)

are second-order accurate finite difference matrices (Fornberg, 1988). Note that we

have enforced the periodic boundary conditions via the first and last rows of these

spatial operators. There are more accurate/stable spatial discretisation methods

for dealing with the nonlinear term in (6.1), however, for our experiments finite

differences will suffice.

Before proceeding with the experiments we remark on the implementation of

different boundary conditions. When attempting to implement Dirichlet boundary

conditions (e.g. v(−L, t) = v(L, t) = 0) in (6.1) we found that the GP emulators

run into numerical stability issues when trying to Cholesky decompose covariance

matrices. The instabilities arise because a number of the acquisition data points

generated are “too close” to one another in state space—due to the fixed solution

values on the boundaries. A similar problem occurs for Neumann boundary conditions

(e.g. vx(−L, t) = vx(L, t) = 0) if the solution values on the boundaries do not change

very much over time. With periodic conditions, solutions values on the boundaries
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(a) (b)

Figure 6.1: Numerical results obtained solving the viscous Burgers’ equation (6.1)
over (x, t) ∈ [−1, 1]× [0, 5]. (a) Solution v(x, t) obtained using the fine solver. (b) The
maximal errors between solutions from Parareal and GParareal vs. the fine solution,
having converged in 9 and 4 iterations, respectively.

are always changing (see Figure 6.1(a)) and so the instabilities do not arise. One

way to avoid these numerical issues could be to remove input data points that

are too close (using some pre-defined radius) to one another—although we did not

test this here. On a similar thread, we attempted to discretise the spatial domain

using pseudospectral methods (Trefethen, 2000), where spatial points are designed to

cluster near boundaries (where interesting dynamics often occur appear). This meant,

however, that data points were again too close to one another and so numerical

instabilities arose. One thing to investigate in the future is whether alternative

spatial discretisation methods (e.g. finite elements, finite volume) are compatible

with GParareal and whether there are ways to avoid these numerical instabilities.

In the following experiments, we set N = d = 128, L = 1, ν = 10−2, integrate

over t ∈ [0, 5], and select solvers F∆T = RK8 and G∆T = RK1. In Figure 6.1, we

solve (6.1) using NF = 256, 000 and NG = 512 time steps—the stopping tolerance

for Parareal is set to ε = 10−6. Figure 6.1(a) illustrates how the (periodic) initial

condition v0(x) = 1
2(cos(9

2πx) + 1) (henceforth referred to as “IC1”) is propagated

to the right (in space) and diffuses over time. In Figure 6.1(b), we see the solution

error following convergence of Parareal and GParareal—notice that while the error

from GParareal is worse than Parareal, it does converge in over half the iterations (4

versus 9). This again demonstrates that the emulation process in GParareal works

very well for a much larger system of equations than has been previously tested.

More detailed numerical results for these simulations are shown in the first row of

Table 6.1(a-b). The second rows of these tables are results obtained when solving for

a different initial condition v0(x) = 1
2(cos(3

2πx) + 1) (referred to as “IC2”).

What is noticeable from the GParareal simulations of IC1 and IC2 is that even

though speedup exceeds that of Parareal in both cases, it is severely hindered
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Table 6.1: Numerical wallclock time, speedup, and efficiency results obtained solving the
viscous Burgers’ equation (6.1) with GParareal for different initial conditions and legacy
data—refer to the main text for details of each of the problems solved. Theoretical results
calculated using (2.11)–(2.13) and (5.17)–(5.19) are shown in brackets. All timings are
measured in seconds and have been averaged over five independent simulations.

Problem N kpara TG TF TGP Tserial Tpara Spara Epara

IC1 128 9 4.70E−5 72.22 — 9.24E3 754.78 (650.04) 12.25 (14.22) 0.10 (0.11)

IC2 128 10 4.70E−5 72.34 — 9.27E3 858.00 (723.42) 10.79 (12.80) 0.08 (0.10)

(a) Parareal results

Problem N kGPara TG TF TGP Tserial TGPara SGPara EGPara

IC1 128 4 4.70E−5 72.22 212.76 9.24E3 528.82 (501.67) 17.48 (18.43) 0.14 (0.14)

IC2 128 5 4.70E−5 72.34 368.02 9.27E3 774.32 (729.74) 11.96 (12.69) 0.09 (0.10)

IC2(L) 128 5 7.30E−5 71.88 1.50E3 9.20E3 1.89E3 (1.86E3) 4.87 (4.95) 0.04 (0.04)

IC2(LHS) 128 4 8.20E−5 72.64 1.20E3 9.30E3 1.55E3 (1.49E3) 6.00 (6.24) 0.05 (0.05)

(b) GParareal results

Problem N kGPara TG TF TGP Tserial TGPara SGPara EGPara

IC1 128 4 6.50E−5 72.06 54.79 9.22E3 367.91 (343.06) 25.07 (26.89) 0.20 (0.21)

IC2 128 5 6.00E−5 74.33 90.91 9.51E3 501.02 (462.62) 19.00 (20.57) 0.15 (0.16)

IC2(L) 128 5 6.90E−5 72.02 366.64 9.22E3 791.23 (726.77) 11.65 (12.68) 0.09 (0.10)

IC2(LHS) 128 4 6.20E−5 72.09 256.06 9.23E3 569.89 (544.46) 16.19 (16.95) 0.13 (0.13)

(c) Optimised GParareal results

by size of TGP—accounting for approximately 40% and 48% of the total runtime

TGPara, respectively. Clearly, the proportion of time spent on GP optimisation and

querying is far too high (compared to TF) and so we need to optimise the way

GParareal carries out the emulation process. If we delve deeper into the breakdown

of TGP itself (for IC1) we find that 15% of the GP runtime is due to optimisation

of hyperparameters and 85% is due to querying during the PC step (similar results

for IC2). Hyperparameter optimisation is relatively cheap due to the low amount of

acquisition data and because the process has been parallelised across the dimensions

d, i.e. we optimise for each scalar output GP in parallel (recall Section 5.2.2). While

querying the GP in the PC step, i.e. calculating the Gaussian posterior, is by itself

computationally cheap, it requires the inversion (or rather Cholesky decomposition)

of a covariance matrix each time—recall (5.5) and (5.6). This process is repeated

sequentially on up to N time slices, d GPs, and k iterations, leading to the excessively

large GP runtimes we see in Table 6.1(b).

One way to avoid the repeated inversion of the same covariance matrix at
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each time slice tn in (5.5) and (5.6) is to pre-compute its Cholesky decomposition

immediately following the optimisation of the hyperparameters. We calculate and

store the decomposition for each of the d GPs, ready to be called in the PC step1.

This will reduce the total number of Cholesky decompositions required in the PC

step from O(kdN) to O(k). In the first two rows of Table 6.1(c), we again solve

Burgers’ equation for IC1 and IC2 using this newly optimised version of GParareal.

In both cases, we immediately see that TGP decreases by a factor of four, leading to

a dramatic 50% increase in speedup. The GP emulators now account for 15% and

18% of total runtime TGPara, respectively. As discussed in Section 5.1.3, these results

highlight just how important it is to include training runtimes when using any kind

of learning method within a PinT simulation.

In the third rows of Table 6.1(b-c) are results from solving Burgers’ equation

for IC2 using the 506 legacy data points obtained from solving for IC1 (denoted

“IC2(L)”). As before, the optimised version of GParareal cuts the GP runtime down

by a factor of four compared to the non-optimised version, doubling the realised

speedup. However, the use of the legacy data did not result in a reduction in the

number of iterations (k = 5) and so speedup is actually lost—compare speedup in

rows two and three in Table 6.1(c). This loss is directly attributed to the higher

optimisation/conditioning costs incurred by using additional training data, indicating

that legacy data is only really useful when it results in a reduction in k.

This effect can be seen when we use legacy data generated from Latin hypercube

sampling2 (LHS). To do this, we generate 506 points using the LHS scheme and

propagate each one using both F∆T and G∆T (can be done in parallel). Note,

however, that with only N = 128 processors available, this data generation step

took approximately the same amount of time as four F∆T runs to generate (i.e.

506/128 ≈ 3.95)—equivalent to ≈ 290 seconds of runtime. Although this cost is not

accounted for in our runtime calculations, it is important to remember that data

generation is not “free”—something that is often assumed in other learning-based

PinT methods (Agboh et al., 2020; Nguyen and Tsai, 2022; Yalla and Engquist,

2018). In any case, the results (IC2(LHS)) are in fact an improvement over the

IC2(L) experiment, with convergence occurring in 4 iterations instead of 5—see

Table 6.1(b-c), final row. While this demonstrates the effectiveness of using legacy

data to reduce k, the speedup generated is still less than that obtained without the

legacy data due to the high training costs.

1This will of course require the storage of d lower triangular matrices each iteration, however,
given that these matrices were previously being calculated and discarded each iteration anyway, it
will not lead to an overall increase in memory requirements.

2Latin hypercube sampling is a method of generating near-random samples from a d-dimensional
unit hypercube [0, 1]d. If one partitions the unit hypercube into sd smaller (equal size) hypercubes,
then LHS will return s samples with each one lying in its own unique smaller hypercube (McKay
et al., 1979). For example, if d = 1 then there should be one unique sample in each of the s
subintervals (0, 1/s), (1/s, 2/s), . . . , (1− 1/s, 1).
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6.2. Numerical experiments: nonlinear PDEs

Figure 6.2: MPSD at each iteration k in simulations of GParareal when solving
Burgers’ equation (6.1). Results obtained when solving problems IC2, IC2(L), and
IC2(LHS) (see Table 6.1(c)). The dashed black line indicates the stopping tolerance
ε = 10−6.

Finally, we briefly examine the MPSD (recall Section 5.4) of the GP emulators

used in the IC2, IC2(L), and IC2(LHS) experiments from Table 6.1(c). The MPSD

at each iteration of these experiments is plotted in Figure 6.2, showing that the

“accuracy” of the IC2 and IC2(L) GP emulators are very similar. We note that the

MPSD is not a true measure of emulator accuracy but rather an indicator of accuracy

close to the locations at which the emulators are queried. In the IC2(LHS) case, we

see a slight improvement in accuracy due to the way that the data samples have been

drawn near-uniformly across the unit hypercube, suggesting that the LHS legacy

data is beneficial for GParareal in this particular example.

6.2.2 Two-dimensional FitzHugh–Nagumo model

We now solve a larger system, examining how GParareal performs as we increase the

number of spatial points d used in the discretisation of our PDE system. We will

use the optimised version of GParareal discussed in previous section to solve the 2D

FHN model:

PDEs vt = a∇2v + v − v3 − w − c
(x, t) ∈ (−L,L)2 × (t0, T ]

wt = τ
(
b∇2w + v − w

)
ICs v(x, t0) = v0(x)

x ∈ [−L,L]2

w(x, t0) = w0(x)

BCs v ((x,−L), t) = v ((x, L), t)

t ∈ [t0, T ]

(6.3)

v ((−L, y), t) = v ((L, y), t)

vy ((x,−L), t) = vy ((x, L), t)

vx ((−L, y), t) = vx ((L, y), t)
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for v(x, t) and w(x, t) over a square domain. Note we have only listed the boundary

conditions for v(x, t)—identical conditions are required on w(x, t). This system is

a spatially-dependent extension of the FHN model seen in (5.21). We denote the

Laplacian ∇2v = vxx + vyy and fix parameters (a, b, c, τ) = (2.8E−4, 5E−3, 5E−3, 10)

(Krämer et al., 2022).

We discretise both spatial dimensions using d equally spaced points, defining v =

(v((x0, y0), t), . . . , v((xd−1, y0), t), . . . , v((x0, yd−1), t), . . . , v((x0, yd−1), t))ᵀ (similarly

for w). We will denote the Kronecker product of matrices A and B, of dimensions

`×m and r × s, as

A⊗B =


a1,1B · · · a1,mB

...
. . .

...

a`,1B · · · a`,mB

 ,
which is a block matrix of dimension `r ×ms. Using this definition we can write the

differentiation matrices as Dxx = Id ⊗D
(2)
xx and Dyy = D

(2)
yy ⊗ Id. This then allows

us to write (6.3) as the following system of d̃ = 2d2 ODEs

dv

dt
= a(Dxx +Dyy)v + v − v3 −w − c1,

t ∈ (t0, T ].
dw

dt
= τ (b(Dxx +Dyy)w + v −w) ,

(a) v(x, 0) (b) v(x, 8.5) (c) v(x, 100)

(d) w(x, 0) (e) w(x, 8.5) (f) w(x, 100)

Figure 6.3: Numerical solutions obtained solving the 2D FHN system (6.3) over
x ∈ [−1, 1]2 at times (a,d) t = 0, (b,e) t = 8.5, and (c,f) t = 100 using the fine solver
with NF = 51, 200. Solution values for v(x, t) (top panels) and w(x, t) (bottom panels)
are coloured from blue (−1) to green (+1) with contours representing zero values.
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6.2. Numerical experiments: nonlinear PDEs

Table 6.2: Numerical wallclock time, speedup, and efficiency results obtained solving
the 2D FHN system (6.3) with (a) Parareal, (b) optimised GParareal, and (c) further
optimised GParareal for increasing spatial resolution d̃. Theoretical results calculated
using (2.11)–(2.13) and (5.17)–(5.19) are shown in brackets. All timings are measured
in seconds.

d̃ kpara TG TF TGP Tserial Tpara Spara Epara

128 6 8.90E−5 200.08 — 1.02E5 1.51E3 (1.20E3) 67.93 (85.31) 0.13 (0.17)

200 5 1.13E−4 264.55 — 1.35E5 1.60E3 (1.32E3) 84.63 (102.37) 0.17 (0.20)

288 6 1.43E−4 342.73 — 1.75E5 2.42E3 (2.06E3) 72.51 (85.31) 0.14 (0.17)

392 5 1.78E−4 436.41 — 2.23E5 2.44E3 (2.18E3) 91.40 (102.37) 0.18 (0.20)

512 5 1.75E−4 539.54 — 2.76E5 2.97E3 (2.70E3) 92.93 (102.38) 0.18 (0.20)

20000 3 2.12E−1 2445.90 — 1.25E6 9.91E3 (7.77E3) 126.35 (161.15) 0.25 (0.31)

(a) Parareal results

d̃ kGPara TG TF TGP Tserial TGPara SGPara EGPara

128 3 1.64E−4 199.86 5.23E2 1.02E5 1.28E3 (1.12E3) 80.18 (91.11) 0.16 (0.18)

200 3 1.89E−4 264.09 8.39E2 1.35E5 1.80E3 (1.63E3) 75.27 (82.89) 0.15 (0.16)

288 4 2.22E−4 341.99 2.40E3 1.75E5 3.97E3 (3.77E3) 44.06 (86.41) 0.09 (0.09)

392 5 2.71E−4 434.38 5.63E3 2.22E5 8.06E3 (7.80E3) 27.61 (28.51) 0.05 (0.06)

512 4 2.85E−4 536.99 4.38E3 2.75E5 6.74E3 (6.52E3) 40.82 (42.12) 0.08 (0.08)

(b) Optimised GParareal results

d̃ kGPara TG TF TGP Tserial TGPara SGPara EGPara

128 3 1.54E−4 199.82 4.99E2 1.02E5 1.26E3 (1.10E3) 81.21 (93.13) 0.16 (0.18)

200 3 1.91E−4 265.17 7.08E2 1.36E5 1.66E3 (1.50E3) 81.76 (90.27) 0.16 (0.18)

288 4 2.27E−4 343.82 1.77E3 1.76E5 3.37E3 (3.15E3) 52.23 (55.95) 0.10 (0.11)

392 5 2.70E−4 437.42 4.02E3 2.24E5 6.49E3 (6.20E3) 34.53 (36.11) 0.07 (0.07)

512 4 2.94E−4 541.36 3.23E3 2.77E5 5.61E3 (5.40E3) 49.43 (51.35) 0.10 (0.10)

(c) Further optimised GParareal results

In the following experiments, we fix N = 512, L = 1, integrate over t ∈ [0, 100]

and use solvers F∆T = RK8 and G∆T = RK1 (the stopping tolerance is again

ε = 10−6). We use NF = 5.12×108 fine and NG = 2048 coarse time steps with initial

conditions chosen uniformly at random such that v(0),w(0) ∈ [0, 1]d
2

(but fixed to

be consistent across experiments). In Figure 6.3, we plot solutions to (6.3) using

a total of d̃ = 20, 000 points in space (d = 100), illustrating how patterns begin to
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form as time progresses.

Table 6.2(a-b) displays results obtained when solving the 2D FHN system (6.3)

for increasing spatial resolution d̃ when using Parareal and GParareal. The first

thing to notice is that kGPara 6 kpara for each d̃ (ignoring the d̃ = 20, 000 case for the

moment), demonstrating once again that emulation can accelerate convergence. Only

in the d̃ = 128 case do we see this translate into improved speedup over Parareal.

For d̃ > 128, we observe that speedup drops off dramatically, driven purely by large

values of TGP which account for between 47− 70% of the total GParareal runtime in

these experiments.

To again try and tackle the issue of high GP runtimes, we “further optimise” the

implementation of GParareal by storing the distance matrices used in the calculation

of the covariance matrices K(x,x). In short, calculating the (squared Euclidean)

distance matrix (recall (5.2) for the 1D case) between points in the input dataset

is computationally expensive once the dataset x (and d) becomes large. Therefore,

we now pre-calculate these distances once per iteration to be used in the covariance

kernel function whenever required during hyperparameter optimisation/querying. We

can see in Table 6.2(c) that this helps reduce TGP (more when d̃ is large), resulting

in speedup increases of up to 25% in the best case (d̃ = 392).

Even after making these further optimisations we can see that the speedup results

from GParareal are still far below those attained by Parareal for increasing d̃—see

Figure 6.4(a). We illustrate the (still) significant proportion of total GParareal

runtime that posterior querying and hyperparameter optimisation take up in Fig-

ure 6.4(b). We can see that the hyperparameter optimisation takes around 20%

(a) (b)

Figure 6.4: (a) Numerical speedup results from Parareal (dashed red) and GParareal
(dashed blue) plotted with theoretical results (solid), calculated using (2.12) and (5.18),
respectively. (b) Fraction of GParareal runtime TGPara taken up by querying the GP
posteriors (blue), the hyperparameter optimisation (red), and their sum (solid black).
Parareal results from Table 6.2(1) and both sets of GParareal results from Table 6.2(c).
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of runtime and is (approximately) independent of d̃ because it is carried out in

parallel for each GP. There does not seem to be much room for improvement in

the current implementation without switching to alternate optimisation routines or

perhaps increasing tolerances in the routine itself (which may lower the accuracy

of the emulators). We can clearly see that fraction of time the posterior querying

takes up does, however, increase with d̃ because the total number of times GParareal

queries the emulators is O(kdN). This includes the savings made when storing the

Cholesky decompositions. In the worst case, this takes up over 40% of runtime and

so finding a way to eliminate or reduce the dependence on d̃ is paramount, although

unclear at present.

Notice also that GParareal is quite severely hindered in terms of how large

d̃ can be. The solutions in Figure 6.3 were calculated (using the fine solver) for

d̃ = 20, 000, whereas the most GParareal can solve for is d̃ 6 N = 512. While we

could increase N to increase d̃ (which would require more processors), GParareal

would still suffer from the extremely high GP runtimes we have seen here. While

one can always interpolate lower spatial resolution solutions onto a higher resolution

grid, any fine-scale solution behaviour will almost certainly be lost. The final row of

Table 6.2(a) shows that Parareal faces no such restriction on the size of d̃, returning

excellent speedup results for d̃ = 20, 000 (note that to account for the increase in

spatial resolution, we had to increase the number of coarse steps to NG = 1.024× 105

for this particular simulation).

6.3 Discussion and further work

In this chapter, we extended our numerical investigation of GParareal by applying

it to two nonlinear PDE problems: the viscous Burgers’ equation (6.1) and the 2D

FHN system (6.3). When solving Burgers’ equation for different initial conditions

(using 129 spatial points), we found that GParareal converged in at least half the

number of iterations compared to Parareal, leading to additional numerical speedup.

These speedup results were severely limited by the (serial) cost of training/querying

the 129 GP emulators, which took up over 40% of the total GParareal runtime. To

optimise the process, we modified GParareal so that it would store the Cholesky

decomposition (one for each emulator) of each covariance matrix K(x,x) following

hyperparameter optimisation—avoiding the need to recompute it each time the

emulators are queried. While this did reduce GP runtimes by up to four times and

boosted parallel speedup in all cases, the emulation process still accounted for over

15% of total GParareal runtime.

In the cases where legacy data was used, coming from either a previous solve or

from LHS, the GP training costs rose significantly—even when storing the Cholesky

decompositions. We found that using legacy data (in addition to acquisition data)
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each iteration, did not reduce the iteration count significantly enough (if at all) to

reduce GParareal runtimes, leading to severe speedup degradation. This leads us to

conclude that legacy data is most useful only when it will significantly reduce the

iteration count (as we saw in Section 5.3), although this will be unknown a priori

to simulation. One option to reduce training times could be to use the legacy data

during only the first iteration to try to embed some of the valuable legacy information

in the solution early on, without having to keep reusing it at high cost during future

iterations. The idea is that wasteful training may be taking place each iteration if

many of the legacy data points lay “far away” from the exact solution—recall the

discussion in Section 5.2.4.

Using up to 512 spatial points, we found that, once again, GParareal can converge

in fewer iterations than Parareal when solving the 2D FHN system but took a higher

overall wallclock time to do so. We found that with increasing d, the number of

posterior queries made to the GP increases and so even when storing Cholesky

decompositions and distance matrices, the total emulation runtimes ran in excess

of 60% of the total GParareal runtime. The main takeaway from these numerical

experiments is that the importance of incorporating training runtimes is paramount

when trying to quantify the performance of PinT methods that make use of learning-

based methods. In retrospect, it would also make sense to go back and apply this

(further) optimised version of GParareal to the experiments from Chapter 5 to observe

their impact on simulation runtimes and speedup results.

A further feature hindering GParareal is that it is limited to solving systems of

size d 6 N in order to carry out hyperparameter optimisation for each of the GP

emulators in parallel. This limited us to solving the 2D FHN system on a 16× 16

grid, whereas Parareal could scale to grids of size 100× 100 (and higher) without

suffering such issues. While one could in theory solve systems of size d > N , it would

require training the GP emulators in parallel batches, e.g. if d = 2N then one trains

d GPs then another d GPs straight after. However, this would most likely lead to

excessively large runtimes as mentioned before.

The key to unlocking the true potential of GParareal is to identify an emulation

method (not necessarily a GP) that is cheap, accurate, and scales well with high-

dimensional datasets. This draws a striking similarity to the quest to find cheap

and accurate coarse solvers for Parareal—recall the discussion in Section 5.1.3. In

GParareal, the emulators are re-trained using all acquisition data (and legacy data

if available) each iteration, leading to extremely high runtimes. A better solution

would be to find an emulator that can avoid being re-trained on the entire dataset

each iteration but rather can re-train itself (quickly) in light of only the new data

(a more “online” type of learning-based method). In addition, one could try to

further reduce GP costs by selecting a subset of the data that “best covers” the

full dataset or perhaps filter out data points that lay “far away” from the exact
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solution (particularly those that do not improve the accuracy of the emulator near

the solution). This could be done using a clustering algorithm (or similar), however,

the benefits of any faster emulation would of course need to outweigh any decrease in

emulator accuracy that may be detrimental to the final iteration count in GParareal.
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Chapter 7

Discussion and outlook

The primary focus of this thesis has been the development and testing of probabilistic

PinT algorithms for more efficiently solving computationally expensive IVPs. The

aim was to accelerate the convergence of Parareal, a well-studied deterministic PinT

algorithm, to solve IVPs faster and generate probabilistic solutions that capture

numerical uncertainty. To do this, we used existing sampling- and learning-based

techniques from PN to harness the valuable information contained within the fine

and coarse solution (acquisition) data generated during a Parareal simulation. In

this final chapter, we will discuss the contribution of these algorithms towards the

aims set out in Chapter 1 and subsequently draw conclusions regarding their future

viability as PinT algorithms.

7.1 Contribution toward original aims

7.1.1 SParareal

Inspired by the first PinT idea proposed by Nievergelt (1964), we developed SParareal,

a sampling-based PinT method that randomly perturbs solutions in Parareal to try

to more efficiently explore the solution space. It works by drawing M samples (at

each time slice) from probability distributions, constructed using the most recently

obtained acquisition data, and propagating them forward in time (in parallel) using

the fine solver. The set of samples yielding the “most continuous” trajectory over

time is then used in the correction term in Parareal’s PC, with the hope of reducing

the number of iterations k until convergence.

Conclusion 1. SParareal should always converge in the same number of

iterations as Parareal or fewer (assuming a minimum level of sampling).

In Chapter 3, we derived, analysed, and tested SParareal on a number of low-

dimensional nonlinear ODEs (Aim I), observing that it could indeed converge in

fewer iterations than Parareal (Aim II). For all IVPs tested we observed that as
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the number of samples M increased, the expected number of iterations required

to converge decreased (we took the expected value due to the stochastic nature of

the algorithm). With a computational complexity almost identical to Parareal, this

meant that SParareal could locate a solution in a shorter wallclock time compared

to Parareal if it converged in fewer iterations.

The reason why we expect SParareal to perform no worse than Parareal is because

it uses the deterministic PC solution (recall Section 3.2) as well as the random samples

to explore the solution space. In the worst case, this means that even if none of the

random samples are chosen as the optimal solution candidates, SParareal is able

to fall back and utilise (values close to, but not exactly) the deterministic Parareal

solutions. In the best case, a combination of the samples and PC solutions are used,

leading to accelerated convergence. We note the minimum level of sampling due to

the exceptional case in Appendix C.2 where SParareal took one more iteration to

converge than Parareal when M = 2 samples were taken—though this occurred in

less than 2.5% of simulations.

Conclusion 2. The probabilistic solutions generated by SParareal are accurate

(in mean-square) with respect to the serially obtained fine (exact) solution.

In Chapter 4, we derived superlinear and linear mean-square error bounds to verify

that the probabilistic solutions (Aim IV) obtained by SParareal are accurate (Aim III).

We found that using additive noise, i.e. state-independent perturbations, in SParareal

was not enough to guarantee accelerated convergence. In addition, this approach

generated solutions with a hard lower bound on their numerical error, proportional

to the bound on the absolute moments of the perturbations used—recall Remark 4.9.

To obtain a higher degree of accuracy (as well as accelerated convergence), the results

showed that the sampling rules outlined in Section 4.1.2, i.e. the state-dependent

perturbations, were required. These rules ensured that the probability distributions

contracted around the exact solution as the SParareal iterations progressed, ensuring

increasing accuracy. This meant that following multiple simulations of SParareal, we

could obtain a distribution of solutions to the IVP just as the sampling-based ODE

solvers proposed by Conrad et al. (2017) did. While these distributions do not really

have any real mathematical interpretation, they could be useful when exploring IVP

solutions that exhibit chaotic behaviour or exist near stable/unstable manifolds.

With regard to which sampling rule should be used in SParareal, we found that

as the level of sampling increased they all performed similarly. That being said, the

choice of sampling rule is flexible with respect to the particular IVP being solved.

For example, one could linearly combine different sampling rules or perhaps choose a

particular distribution family that satisfies known properties of the IVP solution (e.g.

non-negativity). We do, however, suggest that the marginal standard deviations be

chosen such that they contract as the iterations progress (for the reasons mentioned
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above).

Conclusion 3. SParareal can be used to solve any large-scale IVP that Parareal

is suitable for.

The reasoning behind this final conclusion (Aim V) is that Parareal could be slightly

modified to enable idle processors (following the first iteration) to carry out sampling

and propagation at little to no extra computational cost. The performance of this

SParareal-type scheme should be no worse than standard Parareal (ideally better

with the additional sampling, recall Conclusion 1) and, even if there is no reduction in

k, the algorithm will return a stochastic trajectory—beneficial for reasons mentioned

above. If additional processors (beyond the one required for each time slice) are

available, then even more sampling can be carried out and one can deploy standard

SParareal.

We expect SParareal to be able to solve IVPs that Parareal is suited for and

most likely face issues with those that Parareal struggles with (e.g. non-diffusive

IVPs) due to its almost identical structure. As the size of the IVP (i.e. the number

of ODEs being solved) becomes large, however, we expect the sampling to become

less efficient due to the curse of dimensionality. Therefore to reduce the number of

iterations, increasingly more samples will be required to explore the solution space

effectively. As suggested before though, there is no harm (in terms of computational

cost) in carrying out sampling using idle processors given there is a (small) chance of

faster convergence.

With SParareal we have demonstrated that using (guided) random perturbations

can indeed help accelerate the convergence of Parareal and return probabilistic

solutions. While the sampling process may not scale well for large-scale IVPs, we

believe there is no harm in putting idle processors in Parareal to good use by sampling

and exploring more of the solution space. In the future, a particularly interesting

question to answer would be to determine which algorithm to use given a fixed

number of, say NM , processors. For a given IVP, how does Parareal perform when

using NM processors (and therefore NM time slices) compared to SParareal, which

will use M processors to carry out sampling in N each of the N (larger) time slices?

Answering this would help determine which algorithm more efficiently uses each of

its processors and possibly how to more optimally assign samples throughout the

time interval.

7.1.2 GParareal

The GParareal algorithm is a learning-based PinT method that uses GP emulators to

infer the correction term in Parareal’s PC. Each iteration, the emulators are trained

(i.e. the kernel hyperparameters are optimised) using all available acquisition and

136



7.1. Contribution toward original aims

legacy data from prior simulations (if any). Having avoided “throwing away” valuable

solution data like Parareal (and SParareal1), the emulators are then ready to be

queried in the PC step, ideally providing more accurate corrections than Parareal

and enabling more rapid convergence.

Conclusion 4. While GParareal did achieve accelerated convergence over

Parareal for most of the IVPs tests, realising an increase in numerical speedup

is contingent on the total GP emulator runtime being small compared to the

fine solver.

In Chapters 5 and 6, we derived and analysed GParareal (Aim I), demonstrating that

it could converge in fewer iterations than Parareal using only acquisition data for a

number of different nonlinear ODEs and PDEs (Aim II). Convergence in even fewer

iterations could be achieved using legacy data (from prior simulations) in the ODE

experiments, however, this proved less effective for the PDE problems (even using

pseudo-randomly generated legacy data). Results suggested that the acquisition data

rather than legacy data was most effective at accelerating convergence in GParareal

(especially since additional training time was required for simulations using legacy

data). In line with the complexity analysis, experiments verified that realising the

maximum possible speedup with GParareal was contingent on the cost of training

the GP emulators being small (compared to the cost of running the fine solver).

The PDE experiments in Section 6.2 showed that even when training the d

emulators in parallel and storing distance matrices/Cholesky decompositions (used

repeatedly during querying in the PC), the emulation process still took up large

proportions of the total GParareal runtime. In addition, we found that the emulation

process worked best (learned F∆T −G∆T most effectively) for IVPs with more slowly

varying/smoother dynamics (see Sections 5.3.1, 5.3.3, 6.2.1, and 6.2.2) and less well for

IVPs that exhibited more fast moving/chaotic dynamics (recall Sections 5.3.2, 5.3.4,

and 5.4). We will continue discussing the implications surrounding the emulation

process in Conclusions 6 and 7.

Conclusion 5. The deterministic solutions generated by GParareal are accu-

rate with respect to the serially obtained fine (exact) solution. In fact, accuracy

is proportional to the fill distance of the training dataset.

In all numerical experiments, the solutions obtained by GParareal were accurate

with respect to the fine solver solution and of a comparable order of accuracy to

the solutions obtained by Parareal. Using an existing result on the consistency of

the GP posterior mean, we derived an error bound (in Section 5.2.4) showing that

1Note that we did not directly compare SParareal and GParareal because we expected the
performance of SParareal (for low sample numbers at least) to be similar to that of Parareal—recall
Conclusion 1.
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the accuracy of solutions is directly proportional to the fill distance of the training

dataset (Aim III). This means that each iteration (as the size of the training set

increases), the fill distance should decrease, thereby increasing the accuracy of the

emulator and the GParareal solution—this agreed with numerical simulations.

While we did make use of learning-based probabilistic methods to develop

GParareal, it did not return probabilistic solutions to the IVPs themselves (Aim

IV). This is due to the fact that we approximate the GP posterior in (5.14) by its

(deterministic) expected value, ignoring the posterior variance, in order to propagate a

single value through the PC update in (5.16c). Ideally, we would be able to propagate

the full Gaussian posterior through the PC update to return a probabilistic solution,

however, we were unable to identify a (computationally efficient) method to do this.

Instead of taking the mean, one way to (forcibly) obtain probabilistic solutions in

GParareal could be to draw a random sample from the Gaussian posterior in (5.14),

however, it is unclear how this scheme would perform or even if it would converge to

the correct solution (especially if the posterior variance at the sampling location is

large). Further investigation is required to identify how to embed a computationally

efficient method for propagating uncertainty within the Parareal framework (or

perhaps another PinT method).

Conclusion 6. Accounting for data generation, hyperparameter optimisation,

and querying costs is of the utmost importance when simulating IVPs using

learning-based PinT methods.

The purpose of the PDE experiments in Section 6.2 was to quantify the impact of

GP emulation costs on realisable parallel speedup from GParareal—comments on

which were notably absent in other learning-based Parareal variants (refer back to

Section 5.1.3). Numerical experiments showed that even if GParareal converges in

fewer iterations than Parareal, which saves a number of expensive F∆T runs, the

maximum obtainable speedup is drastically reduced by the cost of running the GP

emulators. By including these costs in our computational complexity analysis, we

hoped to give a more clear picture of the viability of using learning-based methods

to accelerate PinT simulations.

These costs are so critical because they scale cubically (in our naive GP implemen-

tation) with the number of training data points (which increases each iteration, more

so when using legacy data) and with the dimension of the system d (as more posterior

querying required). One could try to exploit some well-known GP approximation

methods to reduce computational runtimes (recall Section 5.2.3), however, care must

be taken not to reduce the accuracy of the emulators too much or else GParareal

will not achieve accelerated convergence. Alternatively, we could try to reduce the

amount of training data used each iteration by somehow selecting a subset of the

acquisition data that is the “most informative”. Again, further experimentation is
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required to determine whether or not this leads to a reduction in the accuracy of the

emulators and therefore GParareal performance.

Conclusion 7. Before GParareal can begin solving large-scale IVPs, further

work is needed to find an emulation method that scales with the size of the

system d and is cheap enough to train accurately as the simulation progresses.

As we saw when solving the 2D FHN system in Section 6.2.2, GParareal is limited to

solving systems of relatively small size (d 6 512). In addition to the GP costs, it can

struggle to accurately infer the correction term, which is a nonlinear d-dimensional

function, because the fill distance is difficult to restrict when d is large. One can use

more data, by increasing N or using legacy data, however, GParareal will then suffer

the issues related to Conclusion 6. Although we did investigate using the Parareal

“fallback” in Section 5.4 to aid GParareal when the emulators were insufficiently

well-trained, questions still remain over how to set the fallback switching tolerance.

To try to improve accuracy in the GP further, one could try using a non-zero mean in

the GP prior, i.e. a function of the order of the error between F∆T and G∆T—though

this would likely come with additional hyperparameter optimisation costs.

The key restriction hindering GParareal is that it can only solve systems of

size d 6 N as we require a processor for each emulator in order to train them all

in parallel. Clearly it is much more desirable to be able to solve systems of size

d > N just as Parareal can, however, it is unclear at present how to do this without

the GP runtimes spiralling out of control. One avenue to explore would be to use

dimensionality reduction techniques such as principle component analysis to reduce

the dimension of the training data and therefore the number of emulators required

in GParareal.

The GParareal algorithm has demonstrated that learning-based methods can

indeed harness solution data to accelerate the convergence of Parareal as long as

training costs remain small. The next natural step in its evolution is to assess how

alternative emulators (which need to be cheaper to train and scale better with d)

perform within the GParareal framework. The problem of finding the best emulators

will be akin to finding the best coarse solvers to use within Parareal and may possibly

require some process of trial and error. We believe, however, that with ever faster

and more accurate learning-methods becoming available, the search will not be long.

7.2 Outlook for probabilistic PinT algorithms

In summary, the analytical and numerical work carried out in this thesis has demon-

strated that probabilistic methods can indeed make use of existing fine and coarse

solution data to improve the performance of the Parareal algorithm. We believe that

by tackling some of the aforementioned issues, the performance and scalability of
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these algorithms can certainly be improved. The hope is that this will lead to more

efficient PinT algorithms that can avoid the need to re-simulate costly IVP solutions

from scratch and instead re-use existing solution data to reduce IVP simulation

runtimes. This should also help pave the way for a fully probabilistic PinT algorithm

that can return a posterior distribution over the solution to an IVP at any given time.

Having investigated using methods from PN within Parareal to achieve this goal, the

next step could be to look into the converse—how can PinT techniques be embedded

within existing sampling- or learning-based PN methods? In any case, we hope that

the ideas put forth in this thesis will contribute to the successful development of

future probabilistic PinT algorithms.
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A Rates of convergence

Here, we briefly recall some definitions on the rates of convergence of real sequences.

These rates will be referred to frequently in discussions on the convergence of Parareal,

SParareal, and GParareal.

Suppose {xk}k∈N0 is a sequence, taking values in Rd, that converges to x∗ ∈ Rd.
The convergence of this sequence is said to be linear if there exists r ∈ (0, 1) such

that

‖xk+1 − x∗‖
‖xk − x∗‖

6 r,

for all k sufficiently large. Similarly, the convergence is said to be superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Figure A.1: The sequences xk given in (A.1) plotted against k (sequence (i) in red and
(ii) in blue). Inset: corresponding absolute errors between the values of each sequence
and the limit x∗ = 1. Sequence (i) converges linearly whilst sequence (ii) converges
superlinearly.
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Note that ‖ · ‖ is some norm on Rd. For example, consider the sequences

(i) xk = 1 + (1/2)k and (ii) xk = 1 + k−k. (A.1)

Both sequences converge to x∗ = 1 with the first sequence converging linearly at rate

r = 1/2 and the second sequence converging superlinearly at rate (1/k+1)(k/k+1)k. In

Figure A.1, we plot both sequences converging toward x∗ = 1 and the corresponding

error at each k, demonstrating linear and superlinear convergence (see inset plot).

Further details on other rates of convergence can be found in Nocedal and Wright

(2006).

B Proof of superlinear error bound for Parareal

Here, we state the proof of Theorem 2.2.

Proof. Define the error ekn := ‖u(tn)−Uk
n‖∞. Then, using (2.9c), that F∆T is the

exact solver (4.5), and adding and subtracting G∆T (u(tn)), we obtain

ek+1
n+1 = ‖F∆T (u(tn))−

(
G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n)
)
± G∆T (u(tn))‖∞

6 ‖
(
F∆T (u(tn))− G∆T (u(tn))

)
−
(
F∆T (Uk

n)− G∆T (Uk
n)
)
‖∞

+ ‖G∆T (u(tn))− G∆T (Uk+1
n )‖∞,

where the second line follows by the triangle inequality. Applying (4.7) to the first

term and the Lipschitz condition (4.8) to the second, we are left with the double

recursion

ek+1
n+1 6 Aekn +Bek+1

n , e0
n+1 6 D +Be0

n, (B.1)

where A = C1∆T p+1, B = LG , and D = C2A (C2 > 0 constant). This recursion

can be solved using the generating function method in Lemma D.3 (setting Λ = 0),

giving us the desired result.

C Additional SParareal experiments

In the following sections, we present additional numerical experiments using SParareal.

C.1 Scalar Bernoulli equation

Consider the nonlinear nonautonomous Bernoulli equation

du1

dt
=

2

1 + t
u1 − t2u2

1, (C.1)
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(a) (b)

Figure C.1: (a) Analytical solution u1 of (C.1) plotted against the serial F∆T solution
and a single realisation of SParareal. Inset: numerical errors of F∆T , SParareal, and
Parareal compared to u1. (b) Errors at successive iterations of Parareal (red) and
ten independent realisations of SParareal (blue). The dashed black line represents the
tolerance ε = 10−10. Both panels use SParareal with sampling rule 3 and M = 100.

with initial value u1(0) = 2 on t ∈ [0, 10]. We discretise using N = 20 time slices,

NG = 20 and NF = 2000 time steps. This equation (C.1) permits the analytical

solution u1(t) = (1 + t)2/(t5/5 + t4/2 + t3/3 + 1/2), tending to zero as t → ∞.

Observe the spacing between equidistant time steps of the true F∆T solution and

the SParareal solution to (C.1) in Figure C.1(a), highlighting the stiffness of the

solution at early times. Given the stopping tolerance ε = 10−10, we can see in

Figure C.1(b) how Parareal converges in k = 8 iterations deterministically while

SParareal converges in ks = 6 iterations for each of the ten independent realisations

shown.

Figure C.2(a) shows the estimated distributions of ks using sampling rule 1. As

expected, if M = 1, convergence is deterministic (i.e. Parareal is equivalent to

SParareal) and hence P(ks = 8) = 1. As M increases however, P(ks = 8) decreases

rapidly to zero whilst P(ks < 8) increases from zero to one with just M ≈ 5 samples.

This demonstrates that SParareal requires very few samples to begin converging

in fewer iterations than Parareal, and that ks assumes low values with increasing

probabilities for increasing M . The stiffness of (C.1) appears to demand much larger

values of M to continually reduce ks when compared to the non-stiff scalar example

in Section 3.3.1.

In Figure C.2(b) we report the expected values of ks for each sampling rule. This

shows that for low values of M , any of the sampling rules can be used to ‘beat’

Parareal. For larger M , however, rules 1 and 3 (centred around the fine solutions)

outperform rules 2 and 4 (which are centred around the PC solution). Further

testing revealed that varying the fine time steps within SParareal had little impact on
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(a) (b)

Figure C.2: (a) Estimated discrete distributions of ks as a function of M for sampling
rule 1. (b) Estimated expectation of ks as a function of M , calculated using estimated
distributions of ks for each sampling rule with error bars representing ± two stan-
dard deviations sd(ks). Distributions were estimated by simulating 2000 independent
realisations of SParareal for each M .

performance. On the contrary, Figure C.3 shows how increasing the number of coarse

steps from 20 to 60 drastically decreases the probability of SParareal converging

sooner than Parareal. Increasing the number of coarse steps increases the accuracy

of the G∆T solver, hence Parareal reaches the stopping tolerance in fewer iterations

k. This result suggests that whilst SParareal can still converge faster than Parareal

by using more samples, it works more efficiently for particular problems where k is

relatively large, i.e. problems in which a coarser G∆T is used.

Finally, we calculated errors between the mean SParareal solution and the F∆T

Figure C.3: Estimated probabilities that ks is smaller than k as a function of M using
sampling rule 3. Each curve shows P(ks < 8) (black), P(ks < 5) (red), and P(ks < 4)
(blue) using coarse steps NG = 20, 40, 60 respectively—noting that Parareal converges
in k = 8, 5, 4 iterations for these coarse steps respectively. As before, 2000 independent
realisations of SParareal were run for each M .
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Figure C.4: Errors of Parareal (red) and mean SParareal (black) solutions compared to
the F∆T solution. The mean error is obtained by running 2000 independent realisations
of SParareal with sampling rule 1 with M = 10—the confidence interval representing
the mean ± two standard deviations is shown in light blue.

solution (Figure C.4). As expected, we observe that the mean solution attains

comparable accuracy to Parareal and the fine solution.

C.2 Square limit cycle system

Consider the system

du1

dt
= − sin(u1)

(cos(u1)

10
+ cos(u2)

)
, (C.2a)

du2

dt
= − sin(u2)

(cos(u2)

10
− cos(u1)

)
, (C.2b)

whose solutions, see Figure C.5(a), for initial values within the box [0, π] × [0, π],

converge toward a square-shaped limit cycle on the edges of the box (Hirsch et al.,

2013). The system is solved over t ∈ [0, 60], starting at u(0) = (3/2, 3/2)ᵀ, using N =

30 time slices and NG = 30 and NF = 3000 time steps. As shown in Figure C.5(b),

Parareal takes k = 20 iterations to converge with tolerance ε = 10−8 whereas ten

realisations of SParareal take between 17 6 ks 6 19.

Contrary to the Brusselator system, Figure C.6(a) shows that sampling close to

the PC values (rules 2 and 4) yield lower expected values of ks. In this case, the

bivariate Gaussian outperforms the t-copula, however the reverse is true for rules

1 and 3. Results generated using uncorrelated samples were found to yield inferior

performance (not shown here). The detailed distributions of ks in Figure C.6(b),

using sampling rule 2, show a best performance of ks = 14 with 100 samples and

P(ks < 20) = 1 for M ≈ 10. They do, however, reveal that in a limited number of

cases (using two samples) convergence occurs in ks = 21 iterations. This suggests

there may be a minimum number of samples required to beat the convergence rate

of Parareal for some systems—something to be mindful of in future experiments.
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(a) (b)

Figure C.5: (a) Numerical solution of (C.2) over [0, 60] using F∆T (black), Parareal
(red), and SParareal (blue). Note that only a subset of the solutions at times t are
shown for clarity. (b) Errors at successive iterations of Parareal (red line) and ten
independent realisations of SParareal (blue lines). Dashed black line represents the
tolerance ε = 10−8. Note that both panels use SParareal with sampling rule 2 and
M = 20.

(a) (b)

Figure C.6: (a) Estimated expectation of ks as a function of M , calculated using
estimated distributions of ks for each sampling rule with error bars representing ± two
standard deviations sd(ks). (b) Estimated discrete distributions of ks as a function of
M for sampling rule 2. Distributions were calculated by simulating 2000 independent
realisations of SParareal for each M .
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D Technical results for SParareal error bounds

D.1 Standard results

Here we state some results that we make repeated use of.

Lemma D.1 (Peter-Paul Inequality). For any u,v ∈ Rd and δ > 0, we have that

2‖u‖‖v‖ 6 δ‖u‖2 + δ−1‖v‖2. (D.1)

Theorem D.2 (Binomial Theorem). For |x| < 1 and some m ∈ N, we have that

1

(1− x)m
=

∞∑
i=0

(
i+m− 1

i

)
xi. (D.2)

D.2 Generating function method

Here, we solve two recurrence relations using generating functions. These two variable

(“double”) recurrences crop up often in convergence analysis involving Parareal (and

other PinT) algorithms and have been used in a number of settings—refer to Gander

and Hairer (2008), Carrel et al. (2022), and Gander et al. (2022) for examples.

Lemma D.3. Let ekn be a non-negative sequence and A,B,D,Λ ∈ R be non-negative

constants. If ekn satisfies

ek+1
n+1 6 Aekn +Bek+1

n + Λ, e1
n+1 6 D +Be1

n, (D.3)

for 2 6 k < n 6 N and ek0 = 0 ∀k > 0, then

ekn 6 DAk−1
n−k∑
`=0

(
`+ k − 1

`

)
B` + Λ

k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`.

Proof. For k > 1, define the generating function for ekn as

gk(x) =
∞∑
n=1

eknx
n. (D.4)

Multiply (D.3) by xn+1 and sum from n equals zero to infinity to obtain

∞∑
n=0

ek+1
n+1x

n+1 6 A

∞∑
n=0

eknx
n+1 +B

∞∑
n=0

ek+1
n xn+1 + Λ

∞∑
n=0

xn+1,

∞∑
n=0

e1
n+1x

n+1 6 D
∞∑
n=0

xn+1 +B
∞∑
n=0

e1
nx

n+1.

Using (D.4), binomial theorem (D.2), and recalling that ek0 = 0 ∀k > 0, we can write

147



Appendices

these expressions as

gk+1(x) 6
Ax

1−Bx
gk(x) +

Λx

(1− x)(1−Bx)
, g1(x) 6

Dx

(1− x)(1−Bx)
,

for |x| < 1, which can be solved iteratively to give

gk(x) 6
( Ax

1−Bx

)k−1 Dx

(1− x)(1−Bx)
+

Λx

(1− x)(1−Bx)

k−2∑
j=0

( Ax

1−Bx

)j
.

Re-arranging terms, this can be written as

gk(x) 6 DAk−1xk
( 1

1−Bx

)k 1

(1− x)
+ Λ

k−2∑
j=0

Ajxj+1
( 1

1−Bx

)j+1 1

1− x
.

The first term can be expressed as

DAk−1xk
( 1

1−Bx

)k 1

(1− x)
= DAk−1xk

( ∞∑
i=0

(
i+ k − 1

i

)
(Bx)i

)( ∞∑
i=0

xi

)

= DAk−1xk
∞∑
m=0

(
m∑
`=0

(
`+ k − 1

`

)
B`

)
xm

= DAk−1
∞∑
n=k

(
n−k∑
`=0

(
`+ k − 1

`

)
B`

)
xn.

The first line follows by applying (D.2) twice, the second line using the Cauchy

product, and the third by setting n = m+ k. The second term can be expressed as

Λ
k−2∑
j=0

Ajxj+1
( 1

1−Bx

)j+1 1

1− x
= Λ

k−2∑
j=0

Ajxj+1

( ∞∑
i=0

(
i+ j

i

)
(Bx)i

)( ∞∑
i=0

xi

)

= Λ
k−2∑
j=0

Ajxj+1
∞∑
m=0

(
m∑
`=0

(
`+ j

`

)
B`

)
xm

= Λ

∞∑
n=j+1

(
k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`

)
xn.

These steps follows as they did for the first term, except that we now set n = m+j+1

instead of n = m+ k in the final step. Combining these expressions we get

gk(x) =
∞∑
n=1

eknx
n 6 DAk−1

∞∑
n=k

(
n−k∑
`=0

(
`+ k − 1

`

)
B`

)
xn

+ Λ

∞∑
n=j+1

(
k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`

)
xn.
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By equating the coefficients in xn on both sides we obtain the bound.

The initial condition (D.3) can be written differently depending on the available

information, i.e. one could instead use e1
n+1 6 D := ê1, slightly altering (D.3).

Lemma D.4. Let êk be a non-negative sequence and Ã, B̃ ∈ R be non-negative

constants. If êk satisfies

êk+1 6 Ãêk + B̃êk−1, (D.5)

with initial conditions ê0 and ê1, then

êk 6 ê0

[
Ã+

√
Ã2 + 4B̃

2

]k
.

Proof. Define the following generating function for êk:

g(x) =

∞∑
k=0

êkxk.

Multiply (D.5) by xk+1 and sum from k equals one to infinity to obtain

∞∑
k=1

êk+1xk+1 6 Ã

∞∑
k=1

êkxk+1 + B̃

∞∑
k=1

êk−1xk+1.

Shifting indices, rearranging, and using the initial conditions we get

g(x) =
∞∑
k=0

êkxk 6
ê0(1− Ãx) + ê1x

1− Ãx− B̃x2
.

Expanding the right hand side in powers of xk, the coefficients give us

êk 6
1

2
√
Ã2 + 4B̃

[
(Ãê0 + ê0

√
Ã2 + 4B̃ − 2ê1)λk1+

(−Ãê0 + ê0
√
Ã2 + 4B̃ + 2ê1)λk2

]
,

where

λ1,2 =
Ã±

√
Ã2 + 4B̃

2
.

Without loss of generality, we use that λ1 > λ2 to simplify the bound and obtain

êk 6 ê0λk1,

which yields the desired result.
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E The Lorenz96 system

The Lorenz96 system was proposed to study the predictability of a “toy” one-

dimensional atmospheric model (Lorenz, 1995)2. It is a system of d ODEs that model

the advection, dissipation, and external forcing of some scalar atmospheric quantity

ui(t) across a periodic array of “sites”, i = 0, . . . , d− 1 (d > 4), over time. Lorenz

suggested thinking of these sites as being spatial locations on a line of latitude around

the Earth. The periodicity means that the labelling of sites can be extended for

j ∈ Z so that uj(t) = ud+j(t). The non-dimensionalised ODEs are given by

dui
dt

= ui−1(ui+1 − ui−2)− ui + F over t ∈ [t0, T ], with ui(t0) = u0
i . (E.1)

The free parameter F is the forcing term, governing how difficult the system is to

solve—higher F means more chaotic dynamics. Extensive bifurcation analysis of this

forcing term F when fixed, or site-dependent, has been carried out by Kerin and

Engler (2020).

In Figure E.1, we solve the Lorenz96 system (E.1) for t ∈ [0, 100] and fixed initial

conditions ui(0) ∈ [0, 1], i = 0, . . . , 49 (d = 50). We do this for three different levels

of forcing, F ∈ {1, 3, 5}, plotting the solution at each site at the final time t = 100.

Over time, the solutions are roughly periodic (clearer when one sees the animated

solutions3) for small F , however, chaos ensues when F = 5 and above. To examine

the performance of GParareal + fallback in Section 5.4, we will solve system (E.1)

for these three levels of forcing.

(a) F = 1 (b) F = 3 (c) F = 5

Figure E.1: Numerical solutions to the Lorenz96 system (E.1) with d = 50 sites and
different levels of forcing: (a) F = 1, (b) F = 3, and (c) F = 5. Solutions are plotted at
t = 100 and were obtained sequentially using the fine solver F∆T = RK8 with NF = 105

time steps.

2Edward Lorenz presented this model at an ECMWF workshop on predictability in Shinfield
Park, Reading in 1995. The paper was not made public until sometime in 1996 and therefore adopted
the name “Lorenz96”.

3To see animated solutions of the Lorenz96 model over time, visit the public code repository.
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N. Krämer, N. Bosch, J. Schmidt, and P. Hennig. Probabilistic ODE solutions in millions of

dimensions. In Proceedings of the 39th International Conference on Machine Learning,

volume 162 of Proceedings of Machine Learning Research, pages 11634–11649, 2022.

https://proceedings.mlr.press/v162/kramer22b/kramer22b.pdf.
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