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The parallel-in-time (PinT) problem
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Motivation and setup

Initial value problems (IVPs) exist all around us:

(a) Weather models (b) Plasma simulation (c) Fluid mechanics

Typically boil down to calculating numerical solutions Un ≈ u(tn) to

du
dt

= f
(
t,u(t)

)
over t ∈ [t0,T ] with u(t0) = u0 ∈ U ⊆ Rd , (1)

on a mesh t = (t0, . . . , tN), where tn+1 = tn +∆T for fixed ∆T = (T − t0)/N.
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The PinT problem
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Suppose we have access to an expensive high accuracy fine solver (F) (e.g. Runge-Kutta).

Aim: Calculate numerical solutions Un+1 = F(Un) sequentially using one processor.
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The PinT problem
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Problem 1: This sequential task could be taking O(100)−O(106) seconds (i.e. up to

minutes, hours, or even days!)



The PinT problem
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Original idea: Split into smaller IVPs, solve each with its own processor (Nievergelt,

1964).



The PinT problem
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Problem 2: How do we solve these smaller IVPs in parallel without the unknown initial

values?



The PinT problem
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Solution: Use a PinT scheme! → e.g. ParaDiag, PFASST, MGRIT, Parareal.



Parareal: an existing PinT algorithm
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Parareal: how it works
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Who: Developed by (Lions et al., 2001) → much research into it since then.

Pros: Flexible, easy-to-use, generates data in favourable way...

How: Utilise N processors and a cheap low accuracy coarse solver G.



Parareal: how it works
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Step 1: Run G serially (yellow).



Parareal: how it works
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Step 2: Using these values, run F in parallel (blue).



Parareal: how it works
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Step 3: Predict with G (red) and correct using difference of previous F and G:

Uk
n+1 = G(Uk

n )︸ ︷︷ ︸
predict

+F(Uk−1
n )− G(Uk−1

n )︸ ︷︷ ︸
correct

.
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Parareal: how it works
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Step 4: Repeat steps 2 and 3 until tolerance met:

|Uk
n − Uk−1

n | < ε ∀n ⩽ N.



Parareal: how it works
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Key point: Parareal stops in k ⩽ N iterations → maximal speedup = N/k .

(n.b. scales to the multivariate case easily.)



So what did I actually do?
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Thesis overview

Main research question: Can we accelerate convergence (i.e. reduce k) by making better use

of the discarded (F and G) solution data in Parareal?

Uk
n+1 = G(Uk

n )︸ ︷︷ ︸
predict

+F(Uk−1
n )− G(Uk−1

n )︸ ︷︷ ︸
correct

→ {Uk
n ,F(Uk

n ),G(Uk
n )}︸ ︷︷ ︸

Lots of data discarded!

0⩽k,n⩽N

Recall → lower k = higher speedup.

How? → harness data with sampling- and learning-based probabilistic methods.

Our aims:

I. derive our own probabilistic PinT algorithms.

II. prove convergence analytically/numerically.

III. demonstrate speedup and scalability vs. Parareal.

IV. generate probabilistic solutions.

Outcome: we developed two algorithms → SParareal and GParareal.
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SParareal: a sampling-based PinT algorithm
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SParareal: the idea
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To begin: Run the first iteration of Parareal.



SParareal: the idea
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New idea: Sample M solutions from prob. distributions constructed using F and G data:

αk−1
n ∼ N (Uk−1

n , (G(Uk
n−1)− G(Uk−1

n−1 ))
2) → propagate all with F in parallel.



SParareal: the idea
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Select “smoothest” trajectory over [t0, t4] and use modified PC:

Uk
n+1 = G(Uk

n )︸ ︷︷ ︸
predict

+F(α̂k−1
n )− G(α̂k−1

n )︸ ︷︷ ︸
new correction



SParareal: the idea
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Key aim: Explore solution space more than Parareal can.

(Different “sampling rules” also available!)



SParareal: results summary
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1D system :
du

dt
= sin(u) cos(u)− 2u + e−t/100 sin(5t) + ln(1 + t) cos(t), t ∈ [0, 100].

(a) Solution (b) Convergence (M = 3) (c) Expected convergence

Pro: Converges in fewer iterations than Parareal for increasing M.

Pro: Returns (stochastic) probabilistic solutions → errors maxn E
[
∥u(tn)− Uk

n∥2
]
bounded.

Pro: Similar results for systems of ODEs.

Con: Requires O(MN) processors vs. N in Parareal.



GParareal: a learning-based PinT algorithm
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GParareal: the idea
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To begin: As before, run G and then F .
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GParareal: the idea
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New idea: Use all prior F and G data to train a GP emulator:

(F − G)(Uk
n ) | {(F − G)(U0

n),U
0
n}N−1

n=0 ∼ N
(
µ̂(Uk

n ), K̂ (Uk
n ,U

k
n )
)
.



GParareal: the idea
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Modified PC: approximate Gaussian by its mean value

Uk
n+1 = G(Uk

n )︸ ︷︷ ︸
prediction

+(F − G)(Uk
n )︸ ︷︷ ︸

new correction

≈ G(Uk
n ) + µ̂(Uk

n )
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GParareal: results summary
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FHN system :
du1
dt

= c
(
u1 −

u31
3

+ u2
)
,

du2
dt

= −1

c
(u1 − a+ bu2), t ∈ [0, 40].

(a) Errors (b) Convergence (c) Speedup

Pro: Good accuracy and half the iterations ⇒ twice the speedup.

Pro: Error bound |u(tn)− Uk
n | ⩽ Λk

∑n−(k+1)
i=0 Ai 1 ⩽ k < n ⩽ N.

Pro: Can re-use old simulation (legacy) → obtain more speedup.

Con: GP training time needs to be small, else speedup lost!



So what did we find?
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Wrapping up

Many more results (e.g. ODE/PDE systems, speedup tests, convergence/complexity analysis).

Original aims and open problems:

I. derive our own probabilistic PinT algorithms (✓).

harnessed data using prob. methods to accelerate convergence.

II. prove convergence analytically/numerically (✓).

III. demonstrate speedup and scalability vs. Parareal (speedup ✓, scalability ✗).

SParareal hindered by CoD/processor counts → weighted samples?

GParareal hindered by GP training time → use ”best” data?

IV. generate probabilistic solutions (SParareal ✓, GParareal ✗)

Unsure how to interpret uncertainty from SParareal solutions.

Could sample solutions in GParareal → untested.
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Additional results
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Parareal: complexity

Wallclock time:

Tpara ≈ NTG︸︷︷︸
Iteration 0

+
k∑

i=1

(
TF + (N − i)TG

)
︸ ︷︷ ︸

Iterations 1 to k

= kTF + (k + 1)
(
N − k

2

)
TG .

Parallel speedup:

Spara ≈
Tserial

Tpara
=

[ k
N

+ (k + 1)
(
1− k

2N

)TG
TF

]−1
.

Parallel efficiency:

Epara ≈
Spara
N

=

[
k + (k + 1)

(
N − k

2

)TG
TF

]−1

.
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SParareal: complexity

Wallclock time

TSPara ≈ NTG︸︷︷︸
Iteration 0

+TF + (N − 1)TG︸ ︷︷ ︸
Iteration 1

+
k∑

i=2

(
TF + 2(N − i)TG

)︸ ︷︷ ︸
Iterations 2 to k

= kTF +
(
2kN − k(k + 1) + 1

)
TG .

Note: summation term includes additional cost of running G for optimal samples (as well as

runs of carried out in PC step).

Parallel speedup:

SSPara ≈
Tserial

TSPara
=

[
k

N
+

(
2k − k

N
(k + 1) +

1

N

)
TG
TF

]−1

,

Parallel efficiency:

ESPara ≈
SSPara
NM

=
1

M

[
k + (2kN − k(k + 1) + 1)

TG
TF

]−1

.
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SParareal: further results
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SParareal: results summary

Theorem 1 (Linear error bound for sampling rules)

Suppose SParareal satisfies assumptions 1-3 (see thesis). Then, the maximal mean-square error of the

solution to a nonlinear ODE system satisfies

max
n

E
[
∥u(tn)− Uk

n∥2
]
⩽ ê0

[
A+ Λ1 +

√
(A+ Λ1)2 + 4Λ2(1− B)

2(1− B)

]k

, if B < 1,

for 2 ⩽ k ⩽ N and constants A = C 2
1∆T 2p+2(2 + ∆T−1), B = L2G(1 + 2∆T ),

Λ1 = C 2
1∆T 2p+2L2G(1 + ∆T−1), and Λ2 = C 2

1∆T 2p+2L2G(1 + ∆T ).

(a) Rules 2 and 4 (b) Rules 1 and 3
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SParareal: convergence analysis

Theorem 2 (Superlinear error bound for state-independent perturbations)

Suppose the SParareal scheme satisfies assumptions 1-4 (see thesis). Then, the mean-square error of

the solution to a nonlinear ODE system at iteration k and time tn satisfies

E
[
∥u(tn)− Uk

n∥2
]
⩽ DAk−1

n−k∑
ℓ=0

(
ℓ+ k − 1

ℓ

)
Bℓ + Λ

k−2∑
j=0

n−(j+1)∑
ℓ=0

(
ℓ+ j

ℓ

)
AjBℓ,

for 2 ⩽ k < n ⩽ N and constants A = C 2
1∆T 2p+2(2 + ∆T−1), B = L2G(1 + 2∆T ),

Λ = C 2
2∆T 2q+1(2 + ∆T−1), and D = Aê0.
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GParareal: complexity

Wallclock time:

TGPara ≈ NTG +
k∑

i=1

(
TF + (N − i)TG + TGP(i)

)
= kTF + (k + 1)

(
N − k

2

)
TG + TGP,

where TGP :=
∑k

i=1 TGP(i).

Parallel speedup:

SGPara ≈
[
k

N
+ (k + 1)

(
1− k

2N

)
TG
TF

+
1

N

TGP

TF

]−1

.

Parallel efficiency:

EGPara ≈
SGPara
N

=

[
k + (k + 1)

(
N − k

2

)TG
TF

+
TGP

TF

]−1

.
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GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown

function f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red

dots): (x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

Both µ̂(x∗) and K̂ (x∗, x∗) have nice analytical expressions.

10/10



GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown

function f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red

dots): (x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

Both µ̂(x∗) and K̂ (x∗, x∗) have nice analytical expressions.

10/10



GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown

function f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red

dots): (x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

Both µ̂(x∗) and K̂ (x∗, x∗) have nice analytical expressions.

10/10



GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown

function f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red

dots): (x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

Both µ̂(x∗) and K̂ (x∗, x∗) have nice analytical expressions.

10/10



GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

Step 1: Gaussian prior placed over the unknown

function f (x) (with known mean/covariance functions)

f (x) ∼ N
(
µ(x),K (x , x)

)
.

Step 2: Condition prior on known evaluations (red

dots): (x , y) =
(
xi , f (xi )

)
i=1,...,N

.

Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x∗:

f (x∗) | (x , y) ∼ N
(
µ̂(x∗), K̂ (x∗, x∗)

)
.

Both µ̂(x∗) and K̂ (x∗, x∗) have nice analytical expressions.
10/10



GParareal: results summary

Use legacy data to pre-train the emulator and solve faster!

Step 1: Solve FHN model using initial condition

u0 = (−1, 1)⊺.

Step 2: Store F and G solution data (= legacy data).

Step 3: Re-initialise GParareal using legacy data to

solve for new initial condition u0 = (0.75, 0.25)⊺.

Takeaway: Re-use F − G data in future GParareal simulations to pre-train GP and gain

additional speedup.

Downside: Training time scales with quantity of data!
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GParareal: 2D FitzHugh–Nagumo PDE

Consider the 2D spatially-dependent FHN model given by

vt = a∇2v + v − v3 − w − c , wt = τ
(
b∇2w + v − w

)
, (x , t) ∈ [−1, 1]2 × [0, 100].

Takeaway: Lots of spatial points ⇒ large ODE system to solve.
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GParareal: 2D FitzHugh–Nagumo PDE

Takeaway: Cost of emulation hinders scalability.
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