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The parallel-in-time (PinT) problem



Motivation and setup

Initial value problems (IVPs) exist all around us:

(a) Weather models (b) Plasma simulation (c) Fluid mechanics

Typically boil down to calculating numerical solutions U, ~ u(t,) to

d
d—: = f(t,u(t)) over te[t,T] with u(t)=u’ecld TR (1)
on a mesh t = (tp,...,ty), where thy1 = t, + AT for fixed AT = (T — tp)/N.
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The PinT problem
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Suppose we have access to an expensive high accuracy fine solver (F) (e.g. Runge-Kutta).

Aim: Calculate numerical solutions U,y1 = F(U,) sequentially using one processor.
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The PinT problem
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Problem 1: This sequential task could be taking ©(10°) — O(10) seconds (i.e. up to
minutes, hours, or even days!)
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The PinT problem
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Original idea: Split into smaller IVPs, solve each with its own processor (Nievergelt,
1964).
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The PinT problem
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Problem 2: How do we solve these smaller IVPs in parallel without the unknown initial
values?
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The PinT problem
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Solution: Use a PinT scheme! — e.g. ParaDiag, PFASST, MGRIT,
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Parareal: an existing PinT algorithm



Parareal: how it works
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Who: Developed by (Lions et al., 2001) — much research into it since then.
Pros: Flexible, easy-to-use, generates data in favourable way...
How: Utilise V processors and a cheap low accuracy coarse solver .
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Parareal: how it works
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Step 1: Run G serially (yellow).
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Step 2: Using these values, run F in parallel (blue).
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Parareal: how it works
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Step 3: Predict with G (red) and correct using difference of previous F and G:

Uni1 = 9(Ug) + F(UZTY) = G(U;7Y).

predict correct
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Parareal: how it works
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Step 4: Repeat steps 2 and 3 until tolerance met:
UK — UKt <e Vn< .
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Parareal: how it works

O Fwn — Fom)

GuY)  —— GUY ¢
o o Ul - —

0 ¢

to t1 to ts ta ts t

Key point: Parareal stops in k < N iterations — maximal speedup = N/k.
(n.b. scales to the multivariate case easily.)
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So what did | actually do?



Thesis overview

Main research question: Can we accelerate convergence (i.e. reduce k) by making better use
of the discarded (F and G) solution data in Parareal?
Unpr = G(US) + F(UY) = G(UY) = {Un, F(UR), G(Un)} oskonen
~——
predict correct Lots of data discarded!

Recall — lower k = higher speedup.
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How? — harness data with sampling- and learning-based probabilistic methods.
Our aims:

|. derive our own probabilistic PinT algorithms.

Il. prove convergence analytically/numerically.
[1l. demonstrate speedup and scalability vs. Parareal.
IV. generate probabilistic solutions.

Outcome: we developed two algorithms — SParareal and GParareal.
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SParareal: a sampling-based PinT algorithm



SParareal: the idea
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To begin: Run the first iteration of Parareal.
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New idea: Sample M
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solutions from prob. distributions constructed using F and G data:
(G(UX_1) — G(UK=1))?) — propagate all with F in parallel.
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SParareal: the idea
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Select “smoothest” trajectory over [ty, ta] and use modified PC:

Unia = G(Uy) + F(a57Y) — G(a5™)

predict new correction
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SParareal: the idea
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Key aim: Explore solution space more than Parareal can.
(Different "sampling rules” also available!)
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SParareal: results summary

1D system : :—Ltl = sin(u) cos(u) — 2u + e~ /1% sin(5¢) + In(1 4 t) cos(t), t € [0,100].

2 S

Fiie © SPararcal + Parareal & Rule 1

& Rule 2
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& Ruled

5
2 ‘iA 2 .
[ P
] 5
2o 3 6 9 12 15 18 10° 10t 10? 103
t Number of samples (M)
(a) Solution (c) Expected convergence

= Pro: Converges in fewer iterations than Parareal for increasing M.
= Pro: Returns (stochastic) probabilistic solutions — errors max, E [||u(t,) — U5||2] bounded.
= Pro: Similar results for systems of ODEs.

= Con: Requires O(MN) processors vs. N in Parareal. 6/10



GParareal: a learning-based PinT algorithm



GParareal: the idea
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To begin: As before, run G and then F.
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GParareal: the idea

A
u(t) — Far(U) Key
o Gar(UD)
/ — Far(U})
I Far-Gan@)
}/’/)
¢
u? Q
to t to i3 ’

New idea: Use all prior F and G data to train a GP emulator:
(F = G)UR) | {(F = G)UR), UDas ~ N (A(UR), K(UK, Up)).
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GParareal: the idea
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Modified PC: approximate Gaussian by its mean value

Uk = G(Ux) +(F = G)(UF) = G(UF) + p(Uy)
—_— Y———

prediction new correction
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GParareal: results summary

dug ud dus 1
FHN system: — =c(u1— = +w), ——=—=(u1—a+bw), te]0,40].
dt 3 dt c
10° - " 3 g
[——Tine - Parareal ——Fine - GParareal| ok —e—Parareal
< 10 10°@ —o—GParareal |}
E ‘ - = ~Tolerance |
10° S 10 1 :;
5 10° £
0

10 20 30 40 1 2 4 8 16 32 64
t k Processors

(a) Errors (b) Convergence (c) Speedup

= Pro: Good accuracy and half the iterations = twice the speedup.
= Pro: Error bound |u(t,) — UX| < Ak Y7, (k1) pi 1<k<n<N.
» Pro: Can re-use old simulation (legacy) — obtain more speedup.

= Con: GP training time needs to be small, else speedup lost! 8/10



So what did we find?



Wrapping up

Many more results (e.g. ODE/PDE systems, speedup tests, convergence/complexity analysis).
Original aims and open problems:

|. derive our own probabilistic PinT algorithms (v').
= harnessed data using prob. methods to accelerate convergence.
Il. prove convergence analytically/numerically (v').
l1l. demonstrate speedup and scalability vs. Parareal (speedup v/, scalability X).

= SParareal hindered by CoD/processor counts — weighted samples?
= GParareal hindered by GP training time — use "best” data?

IV. generate probabilistic solutions (SParareal v/, GParareal X)

= Unsure how to interpret uncertainty from SParareal solutions.
= Could sample solutions in GParareal — untested.
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Additional results



Parareal: complexity

Wallclock time:

k
Toa ™ NTg +3 (Te+(N—)T,
para g Z( F ( ’) g)

lteration 0 (=1

Iterations 1 to k

k
= kTr+(k+1)(N— E)Tg.
Parallel speedup:

Uertiel k k | Tg1-1L
S ~ serla:[i_k k+1 _77] '
P Toara N ( ) 2N) Tr
Parallel efficiency:
S kyTg]™
Epara ~ ;;\alra — |:k =+ (k =+ ]_)( — 2)7i:| .
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SParareal: complexity

Wallclock time

k
Tspaa~ NTg +Tr+(N—-1)Tg+) (Tr+2(N—i)Tg)
Iteration O Iteration 1 i=2 Iterations 2 to k

— kTr + (2kN — k(k+ 1) + 1) Tg.

Note: summation term includes additional cost of running G for optimal samples (as well as
runs of carried out in PC step).

Parallel speedup:

Tserial k k 1 TQ -t
Separa A — | E (k- Zk+1)+= )25 |,
P TSPara |:N+< N( * )+N> T]::|

Parallel efficiency:

SSPara
NM

1 Te] ™t
Espara & = [k + (2kN — k(k +1) + 1)9] .

Tr
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SParareal: further results

* Parareal (theory)
O Parareal (numerical)
4 —+—SParareal (theory)

- -o- -SParareal (numerical,
- o~ -SParareal (numerical, )
- -0 -SParareal (numerical, M = 4)

0
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Iterations (k)

U
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QPP O LSO
PR PEE LSS
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of samples (M)

T T T T

T T T

T T

A
+ V V s
2 il
3 il
Parareal error
4 Mean SParareal error il
Mean SParareal error + two std. devs.
5 T T T 1 1 1 1
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SParareal: results summary

Theorem 1 (Linear error bound for sampling rules)
Suppose SParareal satisfies assumptions 1-3 (see thesis). Then, the maximal mean-square error of the

solution to a nonlinear ODE system satisfies

max E[[|u(t,) — U] < &°

A+ M+ (A+NA)2+ 4N (1 - B)

2(1- B)

for 2 < k < N and constants A= CZAT?PT2(2+ AT 1), B=L3(1+2AT),
A = GEAT?PP2UZ(14+ AT 1), and Ny = CGAT?PT2LE(1+ AT).

1010

1015
0

—a—Nu r (SR2)

\
5| Numerical error (SR4)

(a) Rules 2 and 4

100 —— bound
umer or (SR1)| |
- - -Numerical error (SR3)

10°

1010

1015
0

(b) Rules 1 and 3

k
], if B<1,
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SParareal: convergence analysis

Theorem 2 (Superlinear error bound for state-independent perturbations)

Suppose the SParareal scheme satisfies assumptions 1-4 (see thesis). Then, the mean-square error of

the solution to a nonlinear ODE system at iteration k and time t, satisfies
n—k (k-1 k—2 n—(j+1)
E[l|u(t,) — UX||?] < DA*! ( B )Bf +A ( >AJ'B£,
e 7] < o423 (4 >y

for 2 < k < n < N and constants A= CEAT?PT2(24+ AT 1), B = L3(1+2AT),
A= C3AT?1(24+ AT, and D = A&°

10°

% 1010

1015

10—20

-25 L
10 0 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

k
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GParareal: complexity

Wallclock time:
k

TGpPara = NTg +Z(T}—+ (N - f)Tg + TGP(i))
f=il

k
:ka—i—(k+1)<N—2>Tg+ Tcp,

where Tep == 3K | Tep(i).
Parallel speedup:
k k\Tg 1Tl
|4+ (k+D|1—— | =+ —-—| .
SGPars [N+( i )< 2N> T N Tr
Parallel efficiency:

ScPar k. Te Tep]™?t
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GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

2.5 T T T T T T T T T T T T
N —— True function f(z)
15¢
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GParareal: what is a GP emulator?

statistically modelling an unknown (expensive-to-evaluate) function

using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown
function f(x) (with known mean/covariance functions)

f(x) ~ N (u(x), K(x,x)).

| |=———Prior mean

A/

—— True function f(z) Prior uncertainty (!)5‘%)‘
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= Step 1: Gaussian prior placed over the unknown

function f(x) (with known mean/covariance functions) 25— ; —
—Tlll( hmcnonj Prior uncertainty (S)o%)
21 | ——Prior mean gunpl(s from prior
Fx) ~e N (), K(3,%))- A=
1
0.5
ORI
=
-0.5F
-1
L5 FN))
2r
-2.5 5
6 5 -4 -3 -2 -1 0 1 2 3 4 5 6
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GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown

function f(x) (with known mean/covariance functions) 25—
— True function f(z) Prior uncertainty (95%)
21 | ——Prior mean . Known values of f(z) |1
f(x) ~ N (u(x), K(x,x)). 15} ]
1
= Step 2: Condition prior on known evaluations (red L OZ\ /\ /
dots): (x,y) = (Xf’f(xi));zl,,__,,v- = sl \/ \/ |
-1F
1.5¢F
2l
-2.5
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GParareal: what is a GP emulator?

GP emulation: statistically modelling an unknown (expensive-to-evaluate) function
using multivariate Gaussian distributions (Rasmussen and Williams, 2006).

= Step 1: Gaussian prior placed over the unknown

function f(x) (with known mean/covariance functions) p————————————————————
—— True function f(z) Posterior uncertainty (95%)
2 | ——Posterior mean + Known values of f(z)

F(x) ~ N (u(x), K(x, %))

= Step 2: Condition prior on known evaluations (red
dots): (x,y) = (x;, f(Xi))izl,...,N'

= Step 3: Obtain Gaussian posterior, which can be

queried at any unknown x*:

() | (xy) ~ N (B(x7), R(x*,x7)). Fes e s 210125 4 s e

Both fi(x*) and K(x*, x*) have nice analytical expressions. o
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GParareal: results summary

102 : :
—o—Parareal
—e—GParareal (no legacy)
Use legacy data to pre-train the emulator and solve faster! 1008 o GParareal(egacy)

= Step 1: Solve FHN model using initial condition
u® = (-1,1)T.

Max. absolute error

= Step 2: Store F and G solution data (= legacy data).

= Step 3: Re-initialise GParareal using legacy data to
solve for new initial condition u® = (0.75,0.25)T.

= Takeaway: Re-use F — G data in future GParareal simulations to pre-train GP and gain
additional speedup.

= Downside: Training time scales with quantity of data!
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GParareal: 2D FitzHugh—Nagumo PDE

Consider the 2D spatially-dependent FHN model given by

ve=aViv+v—vi—w—c, w=7(bVPw+v—w), (x,t)€[-1,1]*x[0,100].

Takeaway: Lots of spatial points = large ODE system to solve.
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GParareal: 2D FitzHugh—Nagumo PDE

Speedup
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.
4
©

e e o 9 0
w > 0 o N

—— Parareal (theory)

Fraction of GParareal runtime T¢pg,q

| |- -© - Parareal (numerical) 1 0.2
—%— GParareal (theory) 01
L |- © - GParareal (numerical) ] :
: ’ : . . 0
128 200 288 392 512 128 200 288 392 512
d d

Takeaway: Cost of emulation hinders scalability.
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