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Abstract

In this report, the effects of increased realism and complexity in various scientific models is inves-
tigated. It is well established that methods and techniques that incorporate too many features and
parameters risk producing explainable results, creating over-fit models and often unnecessarily waste
computational resources. On the other hand, simplistic methods are often viewed as too idealistic for
the real-world, sometimes thought to produce less accurate results than complex methods. By reduc-
ing the number of idealistic assumptions a model makes, do results necessarily become more accurate
and informative? Short model examples, case studies and experiments are discussed, with regard to
the informativeness of the results they produce, using both simplistic and more complex modelling
techniques. The perception that more complex methods are inherently ‘better’ and more accurate than
more simplistic techniques are also discussed. It is concluded that both simple and complex methods
must be selected with care, depending on what one wishes to discern from a model, the resources

available and the informativeness of the results that it produces.

1. Introduction

Broadly speaking, scientific models can be defined as
“idealisations, abstractions or analogies" [9, p.1] that aid the
understanding of our physical, social and technological re-
alities. In essence they are simplifications, based on fun-
damental assumptions, of a system we wish to try to un-
derstand. Their specific definitions, however, depend enor-
mously on the modeller’s objectives and the field under study
(see [9, p.55]). Whereas experimental models tend to con-
sist of physical setups in lab-based environments (think wave
machines or the Large Hadron Collider), others are often
purely analytical, comprising of theory, flow charts, math-
ematical equations and so forth. The invention of the com-
puter revolutionised modelling capabilities, allowing expen-

sive physical experiments to be replaced with cheaper simulation-

based models. Such problems that have vast numbers of pa-
rameters and outcomes; extremely large data sets; and no
closed-form analytic solutions' in areas from epidemiology
and statistics to operational research and genomics [1, 12]
can now be investigated on drastically smaller timescales.

Models underpin almost all scientific thinking, they are
tools primarily used to understand the way in which a com-
plex system functions, not necessarily to predict and fore-
cast the evolution of such systems (although this knowledge
is certainly beneficial to have!). If constructed correctly,
they can provide invaluable theory, information, visualisa-
tions, and, very rarely, exact solutions of complex systems.
Modelling objectives differ depending on the requirements
of the modeller. Whereas scientific objectives might be a

ISee the Navier-Stokes equations for an example of a fluid mechan-
ics problem that currently has no closed-form analytic solutions in three-
dimensional space but can however be approximated extremely well using
numerical simulations (note that there is a small prize if you can show these
solutions exist!) [18].

combination of the aforementioned features, depending on
research goals and funding, governmental bodies often seek
more predictive (forecast) models to inform policy”. This
contrasts with industry modellers that may seek to automate
and optimise manufacturing processes.

The features that make models more realistic, and there-
fore usually more complex, can include anything from a sys-
tem’s physical scale (micro, meso, macro etc.); its number of
(non-)physical dimensions and parameters; nonlinear effects
and interactions; feedback loops; collective behaviour; or bi-
furcating parameters, to name but a few [17]. That is, to in-
corporate additional features, rules or observations in order
to improve how a model reflects or simulates our physical or
social reality, according to humanistic perceptions.

In this short report we examine the effects of introducing
more realistic features and data into models and how signif-
icantly this impacts their informativeness. Models incorpo-
rating far too much realism risk over-fitting, wasting compu-
tational resources and becoming incoherent to non-technical
individuals whilst simpler models can often be viewed as
too idealistic or basic for real-world needs. We investigate
this trade-off and discuss the benefits and weaknesses of a
simpler versus a more complex approach to modelling and
why complex models are often favoured over more simplistic
ones through the use of informative examples, case studies
and experiments.

2For example, the vast majority of the UK government’s initial re-
sponse efforts to stop the spread of COVID-19 largely focused on fore-
cast models provided by the Imperial College COVID-19 Response Team
among others [8].
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2. Idealism vs. Realism

Depending on the system in question, the distinction be-
tween a simplistic and complex model can be difficult, and
not a strict dichotomy. In an effort to contrast and com-
pare them however, we label them opposites, where a sim-
ple model is one that is intuitive, understandable or explain-
able to individuals with limited knowledge of the problem
under investigation. This, however, does not mean they are
‘easy’ or ‘fully solved’ systems. Complex models, contrary
to discussions in [10], can be thought of as some unquantifi-
able function of, not just model inputs, but also model out-
puts; behaviour; understandability; comprehensibility; and
the ease of computation or construction of said model. At-
tempts to classify complexity in general and specific fields
have been made, however it is not a straight forward task
[13].

Regardless of whether a model is exploratory, analogi-
cal, phenomenological or some other type [14], they can be
described qualitatively, if not quantitatively, by their level
of realism compared to our physical reality (see Figure 1).
Idealisation removes features that are not essential to under-
stand the basic properties of a system (i.e. assuming individ-
uals behave rationally, in social interaction models) whereas
increased realism comprises the opposite, adding more fea-
tures to a model in order to reflect our own reality more ac-
curately.

Y
Realistic

Simplistic Complex

Idealistic

Figure 1: A simplistic categorisation diagram for a generic
model on a scale of idealism and realism versus simplicity and
complexity.

By reducing model idealism, we expect model complex-
ity to increase, hence most models exist somewhere in or
around the green area in Figure 1. Think of the Large Hadron
Collider existing toward the upper right area and idealis-
tic models of perfect competition in economic theory to-
ward the lower left. Clearly not all models fit this (very ba-

sic) taxonomy® and attempting to categorised every type of
model would stir up vigorous debate and criticism among
researchers. Figure 1 provides a simple, overly generalised,
measure for model simplicity versus complexity. Incorpo-
rating our interest, model informativeness, onto a third axis
would be perfect for this report, however this sort of classi-
fication is far beyond any reach. Instead we now consider a
simple idealistic model and increase its realism in order to
qualitatively assess its informativeness.

3. Increasing realism: An agent-based
example

We examine a simplistic agent-based model (ABM), de-
veloped in NetLogo [19, 20, 21], that simulates a forest fire
under some idealising assumptions (see Appendix A for fur-
ther details). It models the spread of an initial line of burning
trees, beginning on the western boundary of a two-dimensional
grid, that propagates eastward, see Figure (2a)-(2d) for visu-
alisations. An initial density of trees is specified by the user
whilst a single output is measured: the percentage of initial
trees burned once the fire burns out.

Upon running an ‘experiment’ in NetLogo (see Appendix
A), we can determine that some form of nonlinear relation-
ship exists between the percentage of forest burned and the
initial tree density, see Figure 3. By increasing the number
of simulations for each density, an empirical range can be de-
termined, dependent on the stochastic (random) nature of the
initial tree density (i.e. dense areas of forest are more likely
to burn down, than less dense areas). This simple model al-
lows us to visualise the spatial spread of the fire however it is
limited by assuming trees are homogeneous; that fire spreads
with probability one if they are adjacent (horizontally and
vertically); no external factors exist (wind, rain etc.); and
that the grid itself is not representative of real forest struc-
ture.

Clearly this simple model cannot replicate the true spread
of a forest fire so let us add some more realistic effects in or-
der to try to improve or discern more information from the
results. Adjusting some code in NetLogo, we allow the fire
to spread diagonally to other tiles. If the forest was partially
wet and contained varying tree types, not every tree would
(or could) catch fire, so now we include a varying probabil-
ity p that a burning tree ignites its neighbour. A toggle can
also be adjusted to include sparks jumping over empty tiles
and igniting other trees. The ensemble averages for different
values of p, with and without spark jumps on or off, are given
in Figure 4. The first obvious observation is that the spark
jumps have negligible impact on the results. The second,
and most dramatic, is the downward shift in critical density

3Social simulation models have been studied and are known to be in-
credibly complex whilst simultaneously being relatively idealistic in their
underlying assumptions [5]. Clearly these sorts of models would sit outside
the green area in Figure 1.
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(a) After t = 0 steps (0% burned).

(c) After t = 20 steps (33% burned).

(b) After t = 10 steps (12% burned).

(d) After t = 32 steps (81% burned).

Figure 2: Visualisations of the agent-based forest fire model from NetLogo as it evolves
over time from (a)-(d) with an initialised tree density of 62%.

(almost 20%) caused by allowing the fire to spread in eight
directions instead of four. Third is that by decreasing p, we
observe that, a higher initial density is required for the same
amount of forest to burn (on average). This increase in initial
density varies, again, in some nonlinear manner that we can-
not discern from this chart and hence further investigation is
required.

We discover that by incorporating more realistic features
into the simple ABM, they do not significantly improve our
understanding of the nonlinear relationship between initial
density and percentage burned. At a significant cost in com-
putational effort* we did however learn of another (unknown)
nonlinear interaction between p and initial tree density. Al-
though limited analysis exposes this relationship, it comes at
high cost as the extra features inadvertently generate approx-
imately 50,000,000 possible parameter combinations (more
with the random initial condition) for the model. Not all
combinations could, or necessarily should be, explored within
limited time however.

4Each curve plotted in Figure 4 took an average of forty minutes to
simulate.

We conclude by saying that the simple model, and to
some extent the complex one, are excellent tools for visu-
alising, teaching and demonstrating how an idealised for-
est fire might propagate in a dense forest. However it be-
comes clear that even if the model had perfectly fitted pa-
rameters; a scaled up forest of interest; more realistic tree
structures and locations; as well as gaps for roads and towns,
it would certainly be computationally infeasible to simulate
and analyse in good time. The additional realism generated
results that were more difficult to analyse, whilst being only
slightly more, if not equally, informative than the simpler
ABM. Whilst this exploratory ABM lacks predictive power
that some groups require to predict the spread of a fire, [11]
suggests that the visualisation aspect can however be used
as a tool for testing firefighting and suppression tactics un-
der real-world conditions.

Therefore, if resources are available, the additional com-
plexity may be worth the effort’> and hence researchers need
to determine, on a case-by-case basis, whether additional re-

5Note that the addition of wind was another feature of the model not
included here for simplicity but available on NetLogo.
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Simple Fire Spread Model
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Figure 3: The relationship between initial forest density and the percentage forest burned,
once the fire has gone out. For each density, 100 simulations were run and the plot gives
the range and median percentage of forest burned.
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Figure 4: The varying relationship between initial density and forest burned is shown for
various p values. Note that in these scenarios fire was also allowed to spread in eight
directions instead of the original four.
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alism (not necessarily in this small model) is worth the time,
money and effort for the results they provide.

4. Perceptions of complex models

Moving away from a specific model, we now discuss how
complex models are perceived and approached by different
individuals and the impact this might have on their infor-
mativeness. As technology advances and we move into a
more data heavy world, UK researchers and funding bod-
ies® are favouring the development of more complex mod-
elling techniques in order to tackle today’s most challenging
problems in fields such as Al, meteorology and epidemiol-
ogy, with the aim of developing models with that mimic and
forecast real world phenomenon. Numerical weather fore-
casts [2] that require solving vast numbers of coupled non-
linear equations with huge data sets on supercomputers are
examples of highly complex models that require increased
realism in order to provide accurate results. This demon-
strates, in some areas, additional realism or complexity is a
requirement, based on necessity, rather than the preference
of the modeller. Such realistic methods have begun to be in-
corporated into more advanced forest fire models that clearly
require a specific level of realism [4].

In these cases, increased realism improves model infor-
mativeness drastically, however this may not always be the
case and, mistakenly, complex models can often be unques-
tionably perceived as ‘better’ or more informative than sim-
plistic alternatives without good reason, explanation or val-
idation. One review [16], quantitatively summarises a set
of papers on population projection models and states that
using complex statistical methods (ARIMA”) makes projec-
tions no more accurate than simple (linear/exponential) ap-
proaches. It was pointed out that the complex methods were
only more accurate when forecasts were made for small pop-
ulation towns and cities, not on larger scales.

Another study discusses the “Dr. Fox Phenomenon" [3]
with regard to unintelligible writing in management science
journals. It was found that a positive correlation existed
between a journal’s academic prestige and its “fog index"
(how readable the journal was), suggesting that harder to
read material was viewed as being of a higher quality, re-
gardless of the content. More recently, [7] discusses the in-
clusion of nonsensical mathematical equations into research
abstracts and how researchers (in non-mathematical fields)
judged them to be of higher quality than those without. Fig-
ure 5 summarises the results of the study and show how
much higher ratings were awarded by participants with less
mathematical training.

6 Almost all of the 75 Centres for Doctoral Training (funded by EPSRC
in 2019) in the UK focus on some form of complex modelling in the physical
sciences [6].

"These are Auto Regressive Integrated Moving Average models used
for fitting historical data and forecasting future data values.

|Area of degree | |Mean (SD) rating advantage of added math‘
|Math, science, techno]ogy| | -1.3(19.2)

Medicine |[16]] 3.0 (16.0)

|Humanities, social science| | 6.6 (21.2)

|Other, e.g., education | |
= o

[ p<.05; ** p<.01.

4.7 (21.0)

|
|
|

=
139" (23.3) \
|
|

Figure 5: A reproduction of Table 1 from 5 displaying the
mean ratings of a research abstract, that included a nonsensical
mathematical equation, by participants from participants with
a variety of undergraduate degrees.

These studies beg the question as to whether we per-
ceive and favour difficulty or complexity as a prerequisite
for a high quality model, regardless of its usefulness and in-
formativeness. Simply because a model’s development and
its results were more difficult to obtain, are they necessar-
ily better than those obtained using a much simpler method?
This may seem unlikely as complex models are often based
on their simpler counterparts, however, as demonstrated by
the forest fire and population projection results, increasing
complexity often amounts to similar, maybe slightly more
detailed, results than their simplistic counterparts for much
more work. Whilst not definitive throughout science, one
must ask if perhaps some models are built for the sake of
complexity and whether, in order to reduce the risk of be-
ing overlooked for future funding or higher ranking journal
publications, some research groups feel obliged to use cut-
ting edge methods when a simpler one might do.

5. Conclusions

We observed, even with a simple ABM, how increased
realism introduced nonlinearity and a measure of obscurity
into model results, making them tougher to explain and more
time consuming to obtain without necessarily improving their
informativeness to much extent. This exploratory model was
however naturally insightful, not because it perfectly repro-
duced forest fire spread but because it provided essential in-
formation about the relationship between initial density and
trees burned. The population projection methods also demon-
strate that blindly applying more advanced forecast meth-
ods did not yield more accurate results than simpler tech-
niques, advocating the use of Occam’s razor when given a
wide choice of modelling techniques. We have also seen that
additional complexity can sometimes be misinterpreted as a
prerequisite for obtaining a superior model without true jus-
tification.

Simplistic models provide excellent tools for exploratory
research and teaching, often having applications in multiple
fields of study (i.e. Nash equilibria in economic, evolution-
ary and computer game theory), an attribute much more dif-
ficult to achieve with more complex case-specific models.
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Complex models can often behave like ‘black box” machines
and it is much easier to discover faults and flaws in simplistic
models. Simpler methods can provide insightful, often pre-
liminary, results much more easily than complex versions,
however individuals who require predictory models, in ap-
plications from weather to infectious disease modelling, may
be forced to use more challenging techniques. In these cases
and where simplistic methods have been exhausted, more
complex methods may be unavoidable, in which case the
modeller faces tough choices about how to optimise param-
eters and minimise computation time, errors inherent in the
model and other associated costs. If we wish to understand a
new problem or system from scratch, selecting the most im-
portant features and creating a simple model is going to be
the best place to start. This may seem obvious, however as
we have seen with the population projection methods, mod-
ellers sometimes opt for the more complex technique when
in fact a simpler method may do the same job.

Recalling Figure 1, we conclude that an optimal balance
must be struck between what a modeller wishes to discern
from a model, the level of realism required to produce mean-
ingful and informative results and the complexity that can be
managed. Clearly we strive for accurate models that repli-
cate real world phenomenon but not when it jeopardises the
reliability and informativeness of results. Deichsel and Pyka
[15] make an interesting point that "we make models in or-
der to reduce the complexity of the real world, not to mirror
it." Whilst I agree with this philosophy, I do however believe
that the overwhelming curiosity and intellectual challenge of
creating models ceases to exist if a model does not at least
try to mirror a little of our own reality.

Appendix A

The forest fire model is run in NetLogo using ‘Fire Sim-
ple Extension 3 Model’, built originally by [20], adapted
slightly for the purposes of these experiments. The two-
dimensional grid consists of small tiles which either con-
tain nothing (black), a tree (green), a tree on fire (red) or a
burnt out tree (dark brown). The user specifies a single in-
put, the initial tree density, which places trees randomly on
tiles throughout the grid (see Figure 2a). Upon simulation,
the fire propagates on the visualiser over time, see Figures
(2b)-(2d), whilst a single output is measured: the percent-
age of initial trees that have burned. The initial governing
rules (adapted later) of the ABM are that:

1. A burning tree can only pass fire to its horizontal and
vertical neighbours (north, east, south and west) in one
step before then burning out itself (it cannot ignite oth-
ers once burnt out).

2. A burning tree passes on the fire with probability p =
1.

3. Fires cannot jump over empty or burnt out tiles.

Initial Density of Forest (35-80%)
All 8 directions? [ p value? [ Sparks? [ Wind?
No p=1 No Unused
Yes p=1 No Unused
Yes p=0.75 No Unused
Yes p=0.5 No Unused
Yes p=1 Yes Unused
Yes p=0.75 Yes Unused
Yes p=0.5 Yes Unused

Table 1

A list of the seven BehaviourSpace experiments run in NetL-
ogo for the forest fire model over 46 initial densities and 100
individual repetitions.

The BehaviourSpace® in NetLogo is an excellent tool
that allows us to run experiments on the model by varying
its parameters systematically over a repeated number of sim-
ulations. Clearly not all parameter values in the parameter
space can be examined in good time and neither is this nec-
essary. In total there would have been around 100 x 100 x
50 x 50 x 2 = 50,000,000 different combinations of parame-
ters in the parameter space, not including the random initial
placement of trees which increases this number further.

Clearly it is infeasible to run all possible scenarios and
hence we examine a certain subset to identify the system’s
overall behaviour. For example, it was found that below 35%
and above 80% initial density, the percentage of trees burned
always reached 0% or 100% as the forest was too sparse or
too dense. This automatically cuts the number of combina-
tions down by over half. The incorporation of wind was also
unnecessary for determining percentage forest burned as it
only affected the spatial aspect (the parts) of the forest that
burned in each simulation, not the total percentage.

A list of the different experiments with varying parame-
ters is given in Table 1. Each of these simulations was run
100 times on four computer processors, in parallel, in order
to generate an ensemble average of the percentage of trees
burned for different initial tree densities (stopping once the
fire goes out). This helped to remove the stochastic fluctu-
ations generated by the random initial conditions. Each ex-
periment in Table 1 was equivalent to running a single sim-
ulation 4600 times (46 different initial densities times 100
simulations). This required around forty minutes of compu-
tation time to run, hence it becomes easy to understand how
exploring ABM parameter spaces becomes very expensive
and time consuming even for such a simple model.

A picture showing the layout of a BehaviourSpace ex-
periment that initialises a forest fire with p = 1 probability
of spread, zero wind and no sparks over 35-80% initial den-
sities is given in Figure 6. It details how to enter values, how
many repetitions are required (100), if runs are measured at

8See https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html for
full details on BehaviourSpace in NetLogo
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Experiment name Mo wind, no rain, no sparks

Vary variables as follows (note brackets and quotation marks):

"density" [35 1 80]] H
"probability-of-spread" 100] ]

"west-wind-speed" 0]
"south-wind-speed" 0]
"big-jumps?" falsel

Either list values to use, for example:

["my-slider” 12 7 81

or specify start, increment, and end, for example:

["my-slider” [0 1 1011 (note additional brackets)

to gofrom 0, 1 at a time, to 10.

You may also vary max-pxcor, min-pxcor, max-pycor, min-pycar, random-seed.

Repetitions 100

run each combination this many times

] Run combinations in sequential order

Faor example, having ["var” 1 2 3] with 2 repetitians, the experiments’ “var” values will be:
sequential arder: 1,1, 2, 2, 3, 3

alternating arder: 1,2, 3,1, 2,3

Measure runs using these reporters:
((count patches with [shade-of? pcolor 121) / initial-trees) * 100

PR T

one reporter per line; you may not split a reporter
across multiple lines

|_J Measure runs at every step
if unchecked, runs are measured only when they are aver

Setup commands: Go commands:
setup [‘ go [‘
v v
Stop condition: Final commands:
the run stops if this reporter becomes true run at the end of 2ach run

Time limit 0

stop after this many steps (0 = no limit)

oK | Cancel

Figure 6: A screenshot showing how the first experiment in
Table 1 is coded into NetLogo's BehaviourSpace. Note that
to adapt the direction of fire spread from 4 to 8, a code is
changed in the model outside of BehaviourSpace.

each time step or just the final step and the quantity being
measured by the experiment. In our case it counts the num-
ber of brown (burnt) patches divided by the initial number
of green (trees) and multiplies by 100 to obtain a percentage.
Further options ensure results can be output to a .csv file and
that repetitions can be run in parallel on multiple computer
cores.
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