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Accurately modelling water droplets that impinge on the surface of flying aircraft and subsequently freeze (damaging
critical flight components) presents a significant challenge in the aviation industry. The large air velocities specific to
the movement of aircraft are sufficient to influence a droplet’s trajectory, as well as its shape and possible break-up.
In this report, potential improvements to the assumptions and approximations made in an existing theoretical droplet
trajectory and deformation model are suggested. Sensitivity analysis identifies weakly influencing model parameters
(i.e. gravity, vertical velocity and viscosity) and reveals the extent to which others (i.e. background flow, forces and
experimental coefficients) drive the model and/or limit its predictive capability. An alternative numerical model is
detailed, coupling local flow around the droplet with the simulated (or analytically approximated) global flow of an
incoming aerofoil. High resolution direct numerical simulations (DNS) are deployed to solve the two-phase Navier-
Stokes equations. Interfacial deformation, flow velocities and pressure profiles are determined and are used to better
inform and validate the existing model. Conditions neglecting vertical displacement and methods for approximating the
background flow are verified, however the droplet is found to only deform as an oblate spheroid (without oscillating) for
a very short time period before exhibiting more localised and one-sided deformation on its face. This initial modelling
approach illustrates the future potential of using DNS as a self-contained method for simulating changes in droplet
morphology in challenging flow regimes, using state-of-the-art computational resources in an efficient manner.

I. INTRODUCTION

The study of fluid droplets that evolve within a secondary
fluid phase (e.g. water droplets in air) can be roughly split into
two main areas of focus: pre-impact and post-impact dynam-
ics. Pre-impact dynamics involve studying a droplet’s trajec-
tory, deformation and, if certain conditions are met, its sub-
sequent breakup. Post-impact dynamics consider the spread-
ing, sticking and splashing of a droplet (or smaller secondary
droplets after breakup) following contact with a solid or liquid
surface.

Investigations into both areas have proven highly challeng-
ing yet are far-reaching, not just within fluid mechanics but to
a variety of phenomena in industrial design and manufacturing
processes. Droplet experiments and computational modelling
have been key in establishing the next generation of ink-jet1

and 3D printers, whilst the development of spray technolo-
gies have contributed to improved efficiency in combustion
engines, materials coating, cooling systems and agricultural
crop spraying2. Medical applications include bloodstain pat-
tern analysis in the forensic sciences3, fabrication techniques
for efficient drug delivery and modelling virus transmission
via airborne saliva droplets4.

Of particular interest however are aeronautical applications
in which aircraft travel through naturally suspended water
droplets (clouds) of varying size and distribution at high ve-
locity. Droplets can impinge upon the surface of the aircraft,
subsequently collecting and freezing on the wings, engine in-
take and other critical flight components. This reduces aero-
dynamic efficiency and in the worst cases can lead to aircraft
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failure. Extensive reviews have been carried out on the ad-
verse effects of rainfall and icing on aircraft performance as
well as on methods of in-flight icing detection5–7. To accu-
rately model and predict under what conditions these adverse
effects occur, it is of particular importance to study the pre-
impact dynamics of droplet deformation and breakup in the
close vicinity of an approaching aerofoil (wing-shaped geom-
etry). While this report focuses on droplets prior to impact,
post-impact dynamics following impingement are also critical
to understanding the effects of sticking, splashing and reten-
tion of water on aircraft surfaces (see two excellent reviews of
impact dynamics8,9).

Modelling secondary atomisation (droplet breakup) analyt-
ically is very challenging due to the, often violent and seem-
ingly chaotic, topological changes that arise on the droplet
interface as it disintegrates10. Many attempts have however
been made to analytically model the overall shape deforma-
tion of an initially spherical droplet by placing it in unidirec-
tional flow. The droplet is then assumed to deform into an
ellipsoidal shape (oblate spheroidal in 3D) under the effects
of the incoming airflow, thus neglecting the details of local
deformations on the droplet surface.

One of the first studies was the Taylor analogy breakup
(TAB) model11 that approximated the equatorial displacement
of an oscillating (deforming) droplet by a classical harmonic
mass-spring system. This analogy was originally made by
Taylor12, who discusses the balance of forces, set up by flow
around the droplet, acting to deform and restore its shape.
Pressure forces set up by inertial effects of the air act to de-
form the droplet whereas both interfacial surface tension and
viscous forces act to restore it. Once restoring forces are
overcome by inertia, the droplet undergoes a specific type of
breakup not captured by the model (refer to Fig. 1).

Improved investigations followed, one being Clark’s lin-
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earised semi-analytical model13 (prohibiting large deforma-
tions) in which forces are balanced around the axisymmet-
ric ‘half-droplet’ centre of mass instead of the equator. The
droplet deformation and breakup (DDB) model was intro-
duced by Ibrahim et al.14 in which forces are balanced by
changes in kinetic and potential energy. Droplet volume in-
stead of area was chosen as a conserved quantity, greatly af-
fecting individual force contributions. Ibrahim et al. compare
all three models to early experimental work15 of droplets ex-
posed to airflow in a wind tunnel. It was found that earlier
models overestimated the magnitude of deformation, however
analysis was limited to only one case study.

More recently, a droplet ratio deformation (DRD) model16

was formulated and improved by calculating more accu-
rate surface area changes and introducing (time-dependent)
slip velocities close to the droplet. Although the DRD
model matched (newer) experiments well, previous models
(TAB/Clark/DDB) again over- or underestimated droplet de-
formation. Whereas the previous models studied droplets ex-
posed to a constant background flow, the slip velocities in the
DRD model could account for an accelerating flow field, just
like the one created by an approaching aerofoil. Building on
this, the same authors develop an extension to the DRD model
in which they couple deformation with the spatial trajectory of
the droplet17. This model is calibrated and verified using ex-
cellent experimental rotating arm facilities18 and is discussed
at length in Section II.

Much experimental effort has gone into trying to image
complex droplet geometries following the onset of breakup
under differing flow conditions. The type of breakup a droplet
experiences has a profound impact on the subsequent atomi-
sation process. Many different modes of breakup with varying
descriptive names have been observed over the years however
they are can be broadly categorised into five main groups19:
vibrational, bag, multi-mode, sheet-thinning and catastrophic
(see Fig. 1). Although out of the scope of the present report,
droplet breakup is an important and challenging area of pre-
impact dynamics and a brief introduction is helpful to provide
an overall picture of the field.

The review by Theofanous20 categorises these modes
(regimes) into two broader classes of breakup: Rayleigh-
Taylor piercing (RTP) and shear-induced entrainment (SIE).
He states the RTP regime as one "governed by the Rayleigh-
Taylor instability; a flattened drop penetrated by one or more
unstable waves" (bag and multi-mode) and the SIE regime
as one "involving a peeling action that results from a com-
bination of Kelvin-Helmholtz instabilities, mean motion due
to viscous shearing, and local capillary breakups of films and
filament" (sheet-thinning and catastrophic). Much pre-impact
study has been focused on categorising these regimes in terms
of various dimensionless groupings, however the differing
flow conditions (sub- and supersonic flows) and experiments
used (shock tubes, drop towers etc.) have lead to varying,
sometimes contradictory, results.

In the last two decades, efficient direct numerical simula-
tions (DNS) have been developed that utilise state-of-the-art
Volume-of-Fluid and adaptive meshing techniques21 in order
to solve the multi-phase equations of fluid motion. Com-

FIG. 1. From top to bottom: the vibrational, bag, multi-mode, sheet-
thinning and catastrophic modes of breakup. Adapted from Guilden-
becher et al.19.

bined with the use of high performance computing facilities,
highly accurate simulations can be produced on timescales up
to O(103) CPU hours, enabling multi-phase flow to be visu-
alised and important quantities, such as velocity and pressure
which are difficult (and expensive) to find experimentally, to
be measured.

Pre-impact studies22–24 using DNS focus primarily on iden-
tifying the different types of breakup regimes that have been
observed experimentally, looking in more detail as to what
processes (such as RTP and SIE) and dimensionless condi-
tions lead to breakup. There is also a strong focus on using
DNS for post-impact dynamics, helping to quantify water re-
tention or ‘blow off’ from an aircraft wing following droplet
impact25. Ideally, all aspects including the droplet, the inter-
face, the flow field and approaching aerofoil would be inves-
tigated numerically, however such a problem is computation-
ally infeasible with large fluid density, viscosity and length
ratios posing significant numerical convergence challenges.

Motivating this report is the need for a model that accu-
rately predicts droplet displacement, deformation and breakup
in the vicinity of an approaching aerofoil. To do this, the in-
stabilities that drive the balance of forces in the flow need to
be quantified. This report considers the coupled droplet trajec-
tory and deformation model proposed by Sor et al.17. The aim
is to analyse and improve this model using a DNS model that
solves the Navier-Stokes equations in two fluid phases. By
calculating pressure and velocity profiles close to the droplet,
the DNS results are used to verify or refute certain assump-
tions made within the existing model and improvements are
subsequently suggested. It is important to determine under
which flow and droplet conditions the existing model works
but also when it becomes invalid (non-physical). Developing
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accurate predictive droplet impingement and breakup models
is crucial for the aviation sector and recent advances in numer-
ical, modelling and experimental methods should be utilised
to achieve this.

The report is structured as follows. Section II outlines and
examines the droplet trajectory and deformation model pro-
posed by Sor et al17. Section III details the DNS model used
to solve the same problem. In Section IV, results from the
DNS are examined in order to suggest what could be improved
in the existing model. Finally in Section V, conclusions and
avenues for future investigation are drawn.

II. THE EXISTING MODEL

In this Section, an introduction to the droplet trajectory and
deformation model developed by Sor et al.17 is presented.
Qualitative details of the model assumptions, background
flow, droplet deformation and their coupling are given, along-
side a mathematical description of the model as laid out by
the authors. Minor clarifications and corrections are made to
certain governing equations and an attempt is made to recre-
ate some of the results found in the paper. Following this,
the critical assumptions and limitations of the model are dis-
cussed with respect to sensitivity analysis, identifying which
features are physically accurate and appropriately defined.

A. Overview and assumptions

The model tracks both the trajectory and deformation of a
water droplet under the influence of an accelerating airflow.
The proposed governing equations, solved numerically, are
validated (and to an extent informed) using experiments car-
ried out in a rotating arm facility18. Droplet motion and de-
formation is modelled in two dimensions26, where an initially
spherical droplet of radius rd is placed with its centre of mass
at the coordinate system origin, see Fig. 2. The incoming
aerofoil approaches from the positive x direction (note that
only the airflow is modelled, not the aerofoil itself), accel-
erating the background flow around the droplet, propelling it
in the negative x and y directions. It is assumed the droplet
deforms as an oblate spheroid with instantaneous semi-major
and -minor axes a(t) and b(t) respectively. The dependent
variables x(t) and y(t) track the droplet’s centre of mass in the
horizontal and vertical directions as it accelerates. No breakup
of the droplet is considered in this model, hence its volume
4πr3

d/3 is conserved for all time. This means that b(t) can be
recovered using the spheroidal geometrical relation r3

d = a2b.
The three time-dependent quantities of interest are therefore
x(t), y(t) and a(t). Henceforth the subscripts 1 and 2 will re-
fer to water and air quantities respectively.

To determine the (accelerating) background air velocity
profile Vair = (Vairx ,Vairy), a particle image velocimetry18 sys-
tem is used, experimentally modelling the aerofoil approach-
ing droplets at constant velocity U∞. Although no analytical
formula is given, Vairx is shown to exponentially increase as
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FIG. 2. Cross-sectional depiction of an oblate spheroidal droplet
(solid line) with semi-major and -minor axes of length a and b re-
spectively, having deformed from an initial spherical shape (dashed
line). The incoming aerofoil (not modelled) is shown accelerating air
flow in the negative x direction. Forces acting to displace the droplet
are also shown.

the aerofoil approaches the droplet. Methods for approximat-
ing this velocity profile are discussed further in later Sections.

The critical assumptions made in the model are that:

1. The vertical component of the background air velocity
profile is negligible, hence |Vairy | ≈ 0.

2. The droplet deforms as an oblate spheroid, in the di-
rections perpendicular (y and z) to the incoming flow,
which, as per the first assumption, is dominated by the
x component of the airflow.

3. No breakup of the droplet is considered at any point in
its evolution, hence its volume is conserved.

4. The drag coefficient of the droplet is the sum of both
steady and unsteady aerodynamic effects.

These assumptions were made following the completion of
the experimental study. The first implies that the model is only
valid close to the stagnation streamline of the incoming aero-
foil, else |Vairy |> 0. It also implies forcing terms in the defor-
mation equation (see below) depend only on the x component
of the flow. This decouples the horizontal displacement and
deformation equations from the vertical displacement. As de-
formation is restricted to an oblate spheroidal shape, all higher
order deformations on the surface of the droplet, such as those
depicted in Fig. 1, are not considered. Ensuring the droplet
cannot break up simplifies the dynamics drastically, thus con-
serving mass and shape. The final assumption incorporates
the unsteady (accelerating) air flow into the drag coefficient.
Further analysis of these assumptions and their implications is
given in the following Sections.
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B. Governing equations

The equations of motion (1a)-(1b) and deformation (1c) are
stated explicitly using Newton’s second law as

m
d2x
dt2 =−FDx , (1a)

m
d2y
dt2 = FDy −mg, (1b)

m
d2a
dt2 = Fp−Fst −Fv, (1c)

where m = 4πr3
dρ1/3 is the droplet mass (ρ1 the water den-

sity) and g the gravitational acceleration. Both FDx and FDy
represent the aerodynamic drag forces acting through the
droplet centre of mass in the x and y directions respectively.
The three terms Fp, Fv and Fst represent the net pressure, vis-
cous and surface tension forces acting on the droplet. Recall
the pressure force, set up by the accelerating flow, acts on the
surface to deform the droplet whereas viscosity and surface
tension forces oppose it.

Using the well-known drag equation, the aerodynamic drag
forces are approximated as

FDx ≈
1
2

ρ2(CD1 +CD2)V
2
sx πa2, (2a)

FDy ≈
1
2

ρ2CD1VsxVsyπa2, (2b)

where ρ2 is the air density; CD1 and CD2 the steady and un-
steady drag coefficients; Vsx and Vsy the slip velocities in x
and y; and πa2 the projected area of the droplet on the plane
perpendicular to the direction of the flow.

Equation (2a) is a physically valid approximation, however
it is unclear why equation (2b) depends on VsxVsy , not V 2

sy , as
well as πa2 instead of an ellipsoidal projected area πab (look-
ing down on the droplet). This seemingly overestimates the
vertical drag force acting on the droplet by a factor of a3 (us-
ing the relation between a and b).

The slip velocity Vs is defined as the difference between
the instantaneous velocity of the droplet and the background
air velocity (recalling Vairy is assumed negligible)

Vsx =
dx
dt
−Vairx , Vsy =−

dy
dt

. (3)

The total drag coefficient CD =CD1 +CD2 is defined as the
sum of steady and unsteady drag components respectively

CD1 =Cb/a
Dsphere

C1−b/a
Ddisk

, (4a)

CD2 =
kb
V 2

sx

dVsx

dt
. (4b)

The steady term CD1 is a product of the drag coefficient of a
perfect sphere and that of a flat disk (the shape of the deformed
droplet perpendicular to the flow). Despite CDdisk = 1.17 being
a fixed constant, CDsphere is allowed to vary with instantaneous
Reynolds number: Re= ρ2Vsx 2a/µ2 (where µ2 is the dynamic

10 -2 10 0 10 2 10 4 10 6

Re

10 -1

10 0

10 1

10 2

10 3

C
D

sp
he

re

FIG. 3. The drag coefficient for a perfect sphere against varying
Reynolds number, as defined by equation (5).

viscosity of air). This seems strange considering CDsphere is
supposed to be steady, not varying with time-dependent terms.
No explicit formula is given for CDsphere however a typical drag
law7, plotted in Fig. 3, is given as

CDsphere =
24
Re

(1+0.197Re0.68 +0.00026Re1.38). (5)

The oblate spheroidal assumption implies a≥ b for all time,
hence the exponents in (4a) act as interpolating parameters
between the two different drag coefficients (a = b at t = 0 and
a > b for large t). No physical interpretation is provided for
this term, with the authors stating it was used retrospectively
to agree with experimental results.

The unsteady term CD2 is proportional to an acceleration
parameter and an experimentally calibrated coefficient k = 9.
This term incorporates the acceleration of the flow field how-
ever the cited literature27 only validates its use experimen-
tally for small (rd ≈ 115−187µm) undeformable droplets and
Reynolds numbers (9-115). These values are much smaller
than those found in the experiments17,18.

Regarding the forces in (1c), the incoming air flow sets up
an imbalanced pressure distribution across the droplet, exert-
ing a force

Fp =
8
3

Cpρ2V 2
sx πr2

d , (6)

on its face, that acts to deform it. It is assumed proportional to
the initial projected area of the droplet face πr2

d . It is argued
that pressure drops sharply away from the stagnation stream-
line and that using πr2

d instead of the instantaneous area πa2

fits the experimental results more accurately. This approxi-
mation will be examined in Section IV when the non-uniform
pressure distribution is calculated in front of the droplet. The
term Cp is another experimentally calibrated pressure coeffi-
cient defined as 0.93.
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Resisting pressure is the interfacial surface tension force

Fst =
64
9

σ
dAd

da
, (7)

which is proportional to the product of the surface tension of
water σ and the rate of change of the droplet’s surface area
with respect to deformation a. The surface area of an oblate
spheroid is given by

Ad = 2πa2 +
πb2

ε
ln
(1+ ε

1− ε

)
, (8)

where ε2 = 1− (b/a)2 defines the eccentricity. The derivative
is found by substituting in b = r3

d/a2 and differentiating to
find28

dAd

da
= 4πa+

6πr6
d

ε2a5 −

[
3πr12

d
ε3a11 +

4πr6
d

εa5

]
ln
(1+ ε

1− ε

)
. (9)

Therefore when the droplet is spherical at t = 0 (a→ 1), there
exists a minimum in the surface area (dAd/da→ 0) and the
tension force (7) is zero. The viscous force also opposes
droplet deformation and is proportional to the energy dissi-
pation found in two-dimensional flow

Fv =
256

9
m

µ1

ρ1

1
a2

da
dt

, (10)

where µ1 is the dynamic viscosity of water. This very small
force is neglected in the model due to the relatively large size
of the droplets under study, however its contribution will be
calculated explicitly in Section II E.

C. Nondimensionalisation

With all the necessary terms in place, the equations are
nondimensionalised using the following scalings

X =
x
rd
, Y =

y
rd
, α =

a
rd
, τ =

tU∞

rc
,

V̄s =
Vs

U∞

, V̄air =
Vair

U∞

, Ād =
Ad

r2
d
,

where rc is the radius of curvature of the incoming aerofoil.
The dimensionless equations of motion and deformation are

d2X
dτ2 =

Γ1Γ2(dV̄airx/dτ)−Γ1α2V̄ 2
sxC

α−3

Dsphere
C1−α−3

Ddisk

1+Γ1Γ2
2/k

, (11a)

d2Y
dτ2 = Γ1α

2V̄sx −Γ3V̄syC
α−3

Dsphere
C1−α−3

Ddisk
, (11b)

d2α

dτ2 = Γ5
1

α2
dα

dτ
−Γ4

dĀd

dα
+

16
3

Γ1CpV̄ 2
sx , (11c)

where the dimensionless parameters are given by

Γ1 =
3
8

ρ2

ρ1

( rc

rd

)2
, Γ2 = k

rd

rc
, Γ3 =

grc

U2
∞

rc

rd
,

Γ4 =
16
3π

σ

ρ1U2
∞rd

( rc

rd

)2
, Γ5 =

256
9

µ1

U∞rρ1

( rc

rd

)
.

These equations can be solved using any suitably accurate
integration method29. They are initialised using the following
conditions

X(0) = 0,
dX
dτ

(0) =
U0

U∞

rc

rd
, (12a)

Y (0) = 0,
dY
dτ

(0) =
V0

U∞

rc

rd
, (12b)

α(0) = 1,
dα

dτ
(0) = 0, (12c)

with the droplet centred at the origin with dimensionless ra-
dius equal to unity. The derivatives initialise dimensionless
velocities using the corresponding dimensional initial veloc-
ities U0 and V0. Note that Sor et al. define U0 = 0 in (12a)
however their results contradict this, clearly having been ini-
tialised using a non-zero U0 (see Section II E).

The final quantity to define is the travelling wave profile
V̄airx . Despite not being stated in the model, a future study30

suggests using an exponential form

V̄airx(X ,τ) = exp
(

τ− r0

rc
+

rd

rc
X
)
, (13)

extrapolated from experimental results. The quantity r0 is
the initial (dimensional) distance between the droplet and the
aerofoil. This is not discussed at length and will be shown to
only marginally impact dynamics. Two alternative methods
for defining the background flow will be discussed in Section
III B.

D. Flow parameters

The dimensionless numbers (14)-(16) play an important
role in quantifying the physical properties and forces that
drive droplet dynamics on a wide range of scales, aiding
the comparison of experimental and numerical results. The
Reynolds number (14) describes the ratio of inertial to vis-
cous forces within each fluid, with larger values indicating
more turbulent flow (note D = 2rd). Both are related via the
density and dynamic viscosity ratios (15). The Weber number
(16) is commonly used in droplet dynamic settings, describ-
ing the ratio of dynamic pressure to surface tension forces. A
higher We usually signifies larger droplet deformations and
more unstable breakup effects. Finally, the Froude number
(16) gives the ratio of inertial to external field forces (in this
case gravity). Large values indicate gravity has little effect on
dynamics.

Re1 =
ρ1U∞D

µ1
Re2 =

ρ2U∞D
µ2

=
ρ

µ
Re1 (14)

ρ =
ρ2

ρ1
µ =

µ2

µ1
(15)

We =
ρ1U2

∞D
σ

Fr =
U∞√
gD

(16)

In order to reproduce the lab-based experimental
results16,17, physical quantities are selected at atmo-
spheric pressure and ambient air temperature 20°C. Fixed
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Case rd (µm) Re1 Re2 We Fr
1 287.5 52230 3463 65288 1212
2 387.5 70397 4668 87997 1044
3 512.5 93106 6174 116383 907

TABLE I. Sor et al. test cases and corresponding dimensionless num-
bers using U∞ = 91ms−1.

Case rd (µm) Re1 Re2 We Fr
4 26 4049 268 4338 3453
5 77 11990 795 12848 2007
6 118 18375 1218 19687 1621

TABLE II. More realistic droplet sizes31 and corresponding dimen-
sionless numbers using U∞ = 78ms−1.

water and air densities are stated as ρ1 = 998.19kgm−3

and ρ2 = 1.20kgm−3, whilst the corresponding dy-
namic viscosities are µ1 = 1 × 10−3kgm−1 s−1 and
µ2 = 1.813 × 10−5kgm−1 s−1. The surface tension be-
tween the two fluids is σ = 7.28×10−2Nm−1.

Ideally, real-world flight conditions31,32 require parameters
adjusted to account for aircraft altitude and temperatures close
to freezing. Of interest are altitudes close to take-off and land-
ing (i.e. when travelling through clouds) and aircraft speeds
of approximately 70-90ms−1 (not cruising altitude speeds).
The aerofoil speeds tested by Sor et al. range from 51ms−1 to
91ms−1 with chord radii from 0.03m to 0.103m. These align
well with realistic conditions however the droplet sizes tested
are much larger than those typically suspended in clouds due
to current imaging limitations. Table I specifies these droplet
sizes alongside the corresponding dimensionless numbers at
the highest aerofoil velocity. Table II details more realis-
tic droplet sizes and quantities from Papadakis et al.31. The
droplets in Table II are more relevant to aeronautical applica-
tions, however they are much more difficult to image experi-
mentally.

To test the model systematically, Case 1 (corresponding to
Fig. 10 in Sor et al.17) is chosen for analysis, using aerofoil
speed U∞ = 91ms−1 and chord radius rc = 0.103m. Although
the droplet is much larger than those in clouds, it provides a
good place to begin sensitivity analysis on the model.

E. Sensitivity analysis

The model requires three final inputs before it can be run,
tested and analysed. The initial horizontal velocity, specified
as U0 = 0 in the original model, was found to actually be
U0 =−0.865ms−1 by extrapolating the derivative of the hor-
izontal displacement at τ = 0 (from Fig. 10 of the paper17).
The initial vertical velocity was originally defined as the ter-
minal velocity of the falling droplet but here is arbitrarily set
to V0 = 1ms−1. The Y trajectory is decoupled from both X
and α , hence V0 only affects Y . Even though small compared
to U∞, these two velocities will be shown to have a profound
impact on droplet displacement and therefore must be spec-

-22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2
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FIG. 4. Trajectory (red) and deformation (solid black) of an initially
spherical droplet (dashed black) at successive dimensionless times τ

in two-dimensional space.

ified carefully. The final parameter, not defined in the orig-
inal model, is r0. Being a free parameter, it is calibrated as
r0 = 1.15rc in order to match results from Fig. 10 of the pa-
per.

By solving equations (11a)-(11c), together with conditions
(12a)-(12c), the trajectory and deformation of the droplet over
1.2 dimensionless time units, corresponding to 1.36ms, is
plotted in Fig. 4. This time corresponds to the instant just
before the aerofoil comes into contact with the droplet. As ex-
pected, the droplet is accelerated in the negative X direction by
the (exponentially) increasing background air velocity, falling
slightly in Y under gravity and its vertical velocity. Movement
in Y is very limited as the inertial force of the background flow
in X dominates gravitational and vertical acceleration. To as-
sess certain features and assumptions of the model, parameter
analysis is now carried out by isolating specific components
and testing their sensitivity to various changes.

Examining equation (11b), it is found that if the gravita-
tional acceleration g is neglected, the difference between the
calculated Y trajectories is only O(10−2) (see Fig. 5). This
minimal effect is a result of the characteristic length D be-
ing so small that inertial effects dominate those generated by
gravity (recall the large Froude numbers in Table I). Similarly
the drag force created in the Y direction is minimal due to the
negligible vertical background flow, an assumption that will
be tested using the numerical methods in Section III. There-
fore unless a large enough initial velocity V0 is prescribed, the
displacement in Y is minimal (recall Fig. 5). Droplets sus-
pended in clouds have little to no vertical velocity anyway so
neglecting both g and V0 is physically valid. The Y displace-
ment is of such small order compared to the size of the aerofoil
(Y rd/rc ∼ O(10−3)) that it has minimal impact on dynamics
as the droplet will not deviate far from the stagnation region.
Note that neglecting both parameters has no impact on the dy-
namics of either X or α .

Contrary to the stationary condition (U0 = 0ms−1) stated
in the original model, U0 is almost certainly non-zero in
the majority of the results reported by the authors. In Fig.
6, the X displacement of the droplet is plotted using pos-
itive, negative and zero U0, alongside the result calculated
numerically by Sor et al. Note how the extrapolated veloc-
ity U0 = −0.865ms−1 matches the result more closely than
U0 = 0ms−1. Initialising using a positive velocity pushes
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FIG. 5. The effect of varying initial vertical velocity V0 and gravita-
tional acceleration g on the Y trajectory of the droplet.
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FIG. 6. The effect of varying initial horizontal velocity U0 on the X
trajectory of the droplet. Also note the corresponding Case 1 trajec-
tory produced by Sor et al.

the droplet towards the aerofoil, however the drag force is
quickly overcome by the accelerating flow, hence the trajec-
tory reverses direction. These varying conditions demonstrate
the significant impact U0 has on the X displacement and to a
smaller, more localised, extent on α , see Fig. 7. Recall this
model is built on the premise that the droplet shape oscillates
over time, much like a mass-spring system, hence the semi-
major axis α grows, flattening the droplet, but also oscillates
on a very small scale as it does so. It is difficult to make com-
parisons to the original results as no plots or data on α are
given.

Although temperature and altitude slightly alter the surface
tension coefficient between water and air, it has minimal im-
pact on the surface tension force. More important is the in-
stantaneous rate of change dAd/da in equation (7). Curiously
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FIG. 7. The effect of varying initial horizontal velocity U0 on the
oscillatory semi-major deformation α over time.
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FIG. 8. Droplet displacement X against time τ for varying initial
distances r0 from the incoming aerofoil. Inset: the linear increase in
X at early times τ .

this time-dependent quantity is used to approximate the ten-
sion, however the pressure force, which directly opposes it, is
fixed proportional to an area of projection (on the droplet face)
πr2

d instead of the true instantaneous area πa2. This would
increase the pressure force as the droplet deforms, therefore
significantly increasing the deformation and trajectory of the
flattened droplet. The pressure distribution will be identified
more accurately in the next Section to determine whether or
not this is a good approximation.

Drag forces acting on the droplet are primarily driven by
changes in the slip velocity V̄s, which in turn is influenced by
the initial position of the droplet. Increasing r0 from 0.5rc to
2rc causes the droplet to feel a roughly constant background
velocity (see inset of Fig. 8) for a longer period of time be-
fore accelerating with the flow. The curves end just before
contact with the aerofoil and increasing r0 above 2rc has no
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FIG. 9. The relative magnitude of each force Fp, Fst and Fv acting on droplets with radius (a) rd = 77µm, (b) rd = 287.5µm and (c)
rd = 512.5µm, plotted as a fraction of the total force over time. (d) The corresponding deformation α(τ) for each case. (e) The magnitude of
the pressure and surface tension forces over time for the largest two droplets.

more effect on X as the droplet reaches maximum displace-
ment. Thus r0 has a minor effect on dynamics and should be
set such that the droplet is initially far enough away that it
feels almost none of the accelerating flow. Note that analysis
on the steady and unsteady drag coefficients within the drag
forces is not considered as it is out of the scope of the present
report.

Figs. 9a-9c describe the fraction of the total force which
pressure, surface tension and viscosity contribute to over time
for varying droplet radii. Observe how the forces contest one
another, causing the droplets to deform and the value of α to
therefore oscillate (see Fig. 9d). Notice in each that at τ = 0
the pressure force Fp, from the accelerating air flow, domi-
nates both Fst and Fv. However, as the droplet begins to de-
form, the rate of surface area change increases and Fst begins
to repel the deformation, continually oscillating with Fp for
the rest of the simulation. Additionally, the oscillations begin
to dampen over time as the velocity of the droplet approaches
that of the aerofoil. Although viscosity was originally omitted
from the model, it was included here to demonstrate how little
impact it has compared to the other forces.

The magnitude of the forces Fp and Fst actually increase

over time (see Fig. 9e) regardless of droplet size. This steady-
state force balance is strictly a feature of the mass-spring as-
sumption and at some time it is expected that pressure forces
would overcome surface tension, leading to droplet breakup.
Figs. 9c-9d show this prominently where stronger forces act
on the largest droplet, deforming it rapidly and significantly
with no breakup possible in the model. It is well established
that at deformation levels such as this, the droplet should be
undergoing some higher order deformation (into crescent-type
shapes) before breaking up rapidly. Recall the sheet-thinning
and catastrophic breakup modes from Fig. 1. This partly
demonstrates the limitations the model has under its current
assumptions.

In this Section, it has been determined that both U0 and rd
drastically affect the balance of forces in this problem. On the
other hand, the parameters g, V0 and r0 are much less critical
to the droplet dynamics. Significant features to test using the
DNS will include, for example, whether V̄airy 6= 0 through-
out the simulation. This would significantly affect the form
of the drag forces in both X and Y , meaning that equations
(11a)-(11c) would all be coupled. Viscous forces appear neg-
ligible for droplets of this size, however the approximation of
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the pressure force should be verified using DNS to ensure its
physical validity.

The underlying assumption that droplets deform as oblate
spheroids must also be considered. The initial shape deforma-
tion is clearly visible during early times of the experiments18,
yet designing a model that can capture further deformation
and breakup up until the time of impact is the long term goal
of interest.

Perhaps the most critical challenge of using the existing
model is the reliance on parameters such as Vair, Cp, CD and k
that require experimental data or some further intuition, guess-
work or extrapolation to acquire. Using experiments to in-
form model assumptions is excellent for developing an accu-
rate model that fits data and closes the governing equations,
however this severely limits the reproducibility of results and
hinders its predictive power. The aim of running the DNS in
the next Section is to improve and/or remove such parame-
ters and degrees of freedom in order to create a more self-
contained, informative model.

III. NUMERICAL MODEL (DNS)

Firstly in this Section, the equations governing two-phase
fluid motion in the droplet problem are outlined. Follow-
ing this the computational domain is described, where a rela-
tively simple but necessary simplification is made in order to
speed up the numerical calculation and save computational re-
sources. A brief description of the numerical software used to
solve this problem is provided before the results are generated
and analysed.

A. Mathematical formulation

Assume that both fluids 1 (water) and 2 (air) are immisci-
ble, incompressible and viscous, retaining the same physical
properties outlined in Section II D. The computational domain
is a two-dimensional box with characteristic length and veloc-
ity scales D and U∞ respectively. The nondimensional Navier-
Stokes and continuity equations

u1τ̄ +(u1 ·∇)u1 =−∇p1 +
1

Re1
∇

2u1−
1

Fr2Fg, (17a)

∇ ·u1 = 0, (17b)

ρ

(
u2τ̄ +(u2 ·∇)u2

)
=−∇p2 +

µ

Re1
∇

2u2−
ρ

Fr2Fg, (17c)

∇ ·u2 = 0, (17d)

govern the flow in each fluid and solutions must satisfy the
boundary conditions, expanded on below, at the droplet inter-
face (as well as on the box, see next Section). The equations
have been nondimensionalised by scaling the lengths on D,
velocities on U∞, time on D/U∞ and pressures on ρ1U2

∞. As
before, due to the large Froude numbers posed by this prob-
lem, the gravity term Fg = (0,1) becomes negligible and is
hence omitted. The quantities ui = (ui,vi) and pi represent
the velocity vectors and pressure fields in fluid i respectively,

each depending on dimensionless time τ̄ and space (x̄, ȳ). The
following coupling conditions must hold on the interface of
the droplet: ȳ = h(x̄, τ̄). They represent the continuity of ve-
locity (18a); the kinematic coupling (18b); and the tangential
(18c) and normal (18d) stress conditions across the interface.
Note in the following that [ fi]

1
2 = [ f1]− [ f2] is notation for the

jump across the interface:

u1 = u2, (18a)
v1 = hτ̄ +u1hx̄, v2 = hτ̄ +u2hx̄, (18b)[

4
µi

µ
hx̄uix̄ +

µi

µ

(
h2

x̄−1
)(

uiȳ + vix̄
)]1

2
= 0, (18c)

[
− pi(1+h2

x̄)+
2

Re1

µi

µ

(
h2

x̄uix̄ + viȳ−hx̄(uiȳ + vix̄)
)]1

2

=
1

We
h2

x̄x̄√
1+h2

x̄

. (18d)

B. Computational domain

Due to the multi-phase nature of the flow and the large dif-
ferences in density and viscosity between the two fluids, a ro-
bust and accurate numerical integrator is required to solve the
governing equations. Simulations are carried out using the
open-source code Basilisk21,33, developed to solve partial
differential equations on adaptive meshes. It has been demon-
strated to provide second-order accurate solutions in both time
and space.

To model the aerofoil, a large sphere34 of radius rc/D is
placed at a distance r0/D upstream of the droplet, see Fig.
10. This distance is far enough such that the droplet initially
‘feels’ no background air flow. It moves at velocity −1 (in
the negative x̄ direction), gradually accelerating flow around
the droplet. Ideally this ‘global’ problem would be solved
directly as stated, however attempting to compute solutions
on a domain with such vast length scales (a one unit wide
droplet vs. an aerofoil 2rc/D≈ 360 units wide) is challenging.
To capture shape deformations accurately, tens of grid points
are required inside the droplet, hence resolving over the entire
domain becomes computationally infeasible and inefficient.
To resolve this issue the computation is split into two parts.

The flow of interest lies close to the droplet, hence con-
sider a much smaller ‘local’ computational box around it. The
box spans 50 units in x̄ and 10 in ȳ, with the droplet centre
of mass initialised at (48,0). It must be both wide and high
enough so that flow conditions imposed upon the boundaries
do not interfere spuriously with the droplet as it evolves. An
adaptive mesh, using a quadtree structure21 is used to provide
higher resolution where necessary (i.e. at the droplet interface,
see Fig. 11) and lower resolution elsewhere. Grid cells have
size O(2−`) depending on the integer level ` of refinement re-
quired, where ` ∈ [7,13]. An axisymmetric domain is used to
further speed up computation, hence only a half droplet need
be considered, with a symmetric boundary condition applied



High-speed droplet dynamics 10

FIG. 10. Sketches of the ‘global’ and ‘local’ computational boxes used in the DNS.

FIG. 11. The adaptive quadtree mesh used within Basilisk, close
to the half-droplet interface. Accelerating flow is approaching from
the right.

on ȳ = 0. Outflow conditions are prescribed on the upper (19)
and left hand boundaries (20) for all τ̄:

v2ȳ(x̄,10, τ̄) = 0 p2(x̄,10, τ̄) = 0 x̄ ∈ [0,50], (19)
u2x̄(0, ȳ, τ̄) = 0 p2x̄(0, ȳ, τ̄) = 0 ȳ ∈ [0,10]. (20)

These conditions enforce a continuity of flow out of the do-
main, imposed far enough away from the droplet as to have
no effect on its dynamics. Velocity and pressure are held sta-
tionary in both fluids (i = 1,2) at τ̄ = 0 such that

ui(x̄, ȳ,0) = 0 and pi(x̄, ȳ,0) = 0, (x̄, ȳ) ∈ (0,50)× (0,10).
(21)

By removing the droplet from the ‘global box’, simulat-
ing the moving sphere becomes a relatively computationally
inexpensive task. This simulation is run, with velocity and
pressure profiles being measured at the inflow boundary of
the ‘local’ box (x̄ = 50 between ȳ = 0 and ȳ = 10) over time.
Analytical expressions for the profiles are then extrapolated
from the resultant data and used as inflow conditions for the
‘local’ box computation.

The validity of the inflow profiles can be verified by com-
paring them to analytical solutions of potential flow gener-
ated in front of a sphere. The inviscid assumption of potential

FIG. 12. Horizontal air velocity u2(x̄, ȳ, τ̄) computed by DNS, mea-
sured at inflow x̄ = 50 over time. Inset: comparison between the
DNS profile at ȳ = 0.5 (the droplet top) and the corresponding ana-
lytic potential solution (A8a).

flow invalidates solutions close to the sphere (where boundary
layers form in viscous flow). However the far-field solution,
where the droplet lies, provides a good analytic approxima-
tion to the accelerating flow felt by the droplet. The veloc-
ity potential φ is derived in Appendix A. A comparison of
the horizontal velocity inflow profile at x̄ = 50 from DNS of
the ‘global’ model and the analytic velocity potential is given
in Fig. 12. The DNS solution for u2(50, ȳ, τ̄) matches the
analytical solution (A8a) exceptionally well, with slight de-
viations possibly due to the inviscid nature of potential flow
and numerical round-off. Similar profiles are generated for
v2(50, ȳ, τ̄) and p2(50, ȳ, τ̄), closely aligning with the analyti-
cal solutions in Appendix A. Both methods therefore provide
a much more robust way of calculating the accelerating ve-
locity and pressure profiles generated by the aerofoil without
having to experimentally extrapolate data as in Section II C.
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IV. NUMERICAL RESULTS

To test the assumptions made in Section II, the (DNS)
droplet model is solved in the ‘local’ computational box. To
identify important flow quantities near the droplet, measure-
ments are taken on the boundary of a dynamically moving
window, much like the one used to measure the inflow con-
ditions in the ‘global’ domain. Each boundary is situated one
droplet radii (0.5 units) in front, behind and above the half-
droplet, referring to Fig. 10.

The x̄ displacement and maximum (vertical) deformation of
the half-droplet are plotted in Fig. 13. As expected, the ini-
tially stationary half-droplet gradually gradually accelerates
as the air inflow speed increases, thus propelling it across the
domain and subsequently deforming it. It does not travel as
quickly as in the existing model (only reaching 7% of the aero-
foil speed vs. almost 18% at dimensional time t = 1.36ms),
partly because the the maximum deformation is not as large,
thus reducing the area for air to push the droplet. The de-
formation curve in Fig. 13 does not exhibit, at this relatively
high resolution, any small scale oscillations, calling into the
question the validity of the overall mass-spring approximation
used in the previous droplet models in this particular parame-
ter regime.

High resolution snapshots of the deforming interface, at
later times, are given in Fig. 14. Whilst the droplet initially
(τ̄ ≈ 250) deforms into a slightly oblate spheroidal shape, it
becomes increasingly more squashed on its face than rear.
This occurs as a result of faster (horizontal) air flow hitting
the droplet face, while slower air moves behind, setting up an
imbalanced pressure gradient across the droplet (see Fig. 15).
This gradient grows as the droplet is accelerated. The fastest
flow can be observed toward the top of the droplet (ȳ ≈ 0.5),
compared to the sower flow at the base (the stagnation stream-
line ȳ = 0). The pressure force drives the flattening process
(Fig. 14c), pulling the droplet’s centre of mass toward the
face and leaving the interface behind more spheroidal. This
is the work of the currently unknown surface tension force.
At these late time stages (see Fig. 14d), the assumption of
droplet spheroidicity begins to break down, as expected from
previous studies of droplet deformation and breakup.

The assumption that Vairy ≈ 0 in the Sor et al. model can be
validated by observing the vertical velocity of the air above
the half-droplet. Fig. 16a plots the velocity profiles over x̄,
indicating where the centre of mass lies as the droplet acceler-
ates. Fig. 16b depicts the vertical velocity field more qualita-
tively, with air travelling up the face and down the back of the
droplet as it moves. The zero flow approximation (dashed red
in Fig. 16a) is made through the centre of mass in the existing
model and although values from the DNS (black dots) indi-
cate slightly positive vertical flow above the centre of mass,
the scale is O(10−3), demonstrating the flow is minimal and
the assumption holds. This is valid for droplets moving paral-
lel to the stagnation streamline, not however for droplets ap-
proaching the aerofoil at different angles.

Finally, observe the pressure field around the droplet in Fig.
17a. As expected the flow sets up higher pressure in front
of the droplet, while the re-circulation region (not shown)
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FIG. 13. Left axis: displacement of the half-droplet in x̄ against τ̄ .
Right axis: the maximum semi-major deformation of the interface in
the ȳ direction against τ̄ .
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FIG. 14. The half-droplet interface at dimensionless times (a) τ̄ = 0,
(b) τ̄ = 250, (c) τ̄ = 300 and (d) τ̄ = 350.

with slower flow behind the droplet, exhibits a lower pressure.
Coupled with opposing pressures inside the droplet, these act
to deform the droplet as previously described. Equation (6)
approximates pressure at the droplet front, assuming it "de-
creases sharply up from the droplet stagnation streamline re-
gion down to the droplet edge", however Fig. 17b shows pres-
sure increasing sharply from the stagnation streamline to the
droplet top. Pressure applies relatively uniformly across to-
ward the droplet top, especially at earlier times, suggesting
that (6) should account for the growing area πa2 instead of
the fixed πr2

d . This strong effect plays a critical role in the
non-uniform (hence non-spheroidal) deformation observed in
Fig. 14d.

It should be noted that results produced here were done so
with limited computational resources and time. Much more
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FIG. 15. Horizontal velocity profiles u2(x̄, ȳ, τ̄) against ȳ at increas-
ing times τ̄ both in front and behind the half-droplet. Black dots
indicate the maximum height of the droplet interface at the corre-
sponding τ̄ .
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FIG. 16. (a) Vertical velocity profiles v2(x̄, ȳ, τ̄) against x̄, above the
half-droplet, at increasing times τ̄ . The half-droplet centre of mass
is indicated by the black dots and the dashed red line is the zero
flow assumption. (b) Vertical velocity field around the half-droplet at
τ̄ = 150. Flow speeds range from 0.006 (dark red) to 0 (white) to -
0.006 (dark blue). The dashed black line indicates where the profiles
in (a) were measured.

(a)

-4 -3 -2 -1 0

10 -4

0

0.2

0.4

0.6

0.8

1

(b)

FIG. 17. (a) Pressure field inside and around the half-droplet at τ̄ =
150. Values range from 0.0002 (dark red) to 0 (green/yellow) to -
0.0002 (dark blue) with 10 evenly spaced contours between. Dashed
black line indicates where profiles in (b) were taken. (b) The non-
uniform pressure distribution p2(x̄, ȳ, τ̄) against ȳ, in front of the half-
droplet, at increasing times τ̄ . The top of the half-droplet is indicated
by the black dots.

detailed analysis needs to be carried out, as irregularities sim-
ulating the flow close to the interface remain and need to be
fully verified at multiple spatial resolutions. Even though
these quantitative results are not fully numerically accurate,
it was still possible to explore qualitative aspects of the flow
around the half-droplet and provide an insight into the as-
sumptions made in the existing analytical model.

V. CONCLUSIONS

In this report, a detailed analysis of an existing droplet de-
formation and trajectory model has been presented, evaluat-
ing critical assumptions and approximations using the highly
accurate and computationally efficient DNS of decoupled
droplet and aerofoil models. These assumptions consisted of
using the Taylor analogy, no vertical background air flow, de-
formation into an oblate spheroidal shape, no breakup and un-
steady drag effects among others.

The vertical flow above the deforming droplet determined
that the assumption |Vairy | ≈ 0 is valid if the droplet remains
in the stagnation region of the aerofoil. For small droplets
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suspended in clouds, both gravitational acceleration and ini-
tial vertical velocity can also be omitted from deformation
and trajectory analysis. Consequently, in this stagnation re-
gion both features were omitted from the DNS as they have
no impact on horizontal displacement and deformation. The
droplet radii and its initial horizontal velocity did however sig-
nificantly impact dynamics. Two aspects not explored, were
modes of droplet breakup and the steady and unsteady drag
coefficients used in the existing model. Breakup is something
to be dealt with once the deformation model is better under-
stood and, although unclear why certain assumptions were
made about the drag coefficients, these quantities are not yet
(in the unsteady case) fully understood for accelerating flows.

The numerically generated (‘global’ model) or analyti-
cal (potential flow) velocity and pressure profiles provided a
much more efficient and robust way of calculating the accel-
erating background flow rather than extrapolating from exper-
imental results. The DNS also showed, in this specific case,
that the oblate spheroidal assumption only holds for a very
short time after acceleration, after which the droplet face be-
comes dramatically more squashed than the its back due to
flow and pressure gradients. No oscillations of the semi-major
deformation were observed at this scale either. Further numer-
ical test cases would reveal whether it is a true physical fea-
ture or just a consequence of the Taylor analogy assumption.
The non-uniform pressure distribution was found to increase
sharply away from the stagnation streamline, driving the in-
terfacial shape deformation with more precision than the ap-
proximated pressure used in the existing model.

The purpose of this report was to identify the features and
assumptions of the existing analytical model that were physi-
cally valid and to what extent the model could be pushed be-
fore breaking down (i.e. for large droplets ∼ 1mm in diame-
ter). To do this, a self-contained droplet model, that captures
all of the relevant physics associated with an accelerating air-
flow, was developed - something not studied previously in nu-
merical detail.

Although not fully mature, efficiently coupling the ‘local’
and ‘global’ DNS domains was a good first attempt at reduc-
ing the computational requirements of such a detailed model.
It illustrates the future potential of building a more global
predictive model for studying droplet morphology in (almost)
real-world flight conditions. This is an extremely challenging
numerical regime that has yet to be extensively explored. Vast
differences between the fluid densities and viscosities as well
as high spatial resolutions on the droplet interface require sig-
nificantly more computational resources the larger the droplet
and domain become.

Further work is needed to fully complete and refine the
DNS model. One aspect is to make the Basilisk code as effi-
cient as possible, simulating flow solutions with high accuracy
only where strictly necessary in the domain. By simulating in
a larger ‘local’ box, deformation and breakup behaviour can
be captured over much longer timescales. The numerical va-
lidity of results must also be investigated by solving the prob-
lem at different spatial resolutions, allowing for a much more
accurate quantitative analysis that can replace some of the
more limited qualitative descriptions given in this report. To

study dynamics on shorter (computational) timescales, larger
droplets can be considered however this moves away from the
small droplets in clouds that are of real-world significance.
Once the a fully functioning and efficient DNS model is up
and running, an interesting avenue to explore would be to re-
lax the Vairy ≈ 0 assumption, thereby modelling what happens
to droplets above or below the stagnation region of the aero-
foil. Closely following this, and computationally heavier still,
would be to investigate droplet breakup modes under an accel-
erating flow, something only investigated for constant back-
ground flows in the literature. Coupling such a model with
post-impact droplet models is something to look toward in the
future as well.

The existing model represents the current state-of-the-art in
modelling droplet dynamics analytically, approximating the
experimental results from this highly challenging regime rea-
sonably well. However, further analytical progress, such as
attempting to relax the spheroidal assumption or including
breakup, seems at present a difficult challenge. The recent
advances in DNS for multi-phase flows illustrate the potential
for capturing droplet dynamics at high levels of quantitative
detail in these challenging regimes and the present study rep-
resents a first systematic incursion in this direction.
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Appendix A: Potential flow around a sphere

To determine the potential flow around a sphere centred
at the origin, take a spherical coordinate system with radial
length r, polar angle θ and azimuthal angle γ . The problem is
axisymmetric in two dimensions hence independent of γ . To
determine both the velocity u2 =∇φ and the (Bernoulli) pres-
sure field p2 = p0−ρ2|∇φ |2/2 around the sphere, Laplace’s
equation (A1) must be solved for the potential φ(r,θ) (where
p0 is the ambient pressure). Boundary conditions include zero
flow in the far field (A2a) and normal flow equal to that of the
aerofoil on the circular boundary rc (A2b).

∇
2
φ = 0 for r ≥ rc (A1)

∇φ → 0 as r→ ∞ (A2a)
∇φ · n̂=−U∞ cos(θ) on r = rc (A2b)

Using a separable solution of the form φ(r,θ) = R(r)T (θ),
equation (A1) can be written as two inhomogeneous second-
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order differential equations (A3a)-(A3b), dependent upon a
common eigenvalue λ .

r2Rrr +2rRr−λR = 0, (A3a)(
sin(θ)Tθ

)
θ
+λ sin(θ)T = 0. (A3b)

Take a solution of the form Rn(r) = Anrn + Bnr−(n+1) with
constants An and Bn for n ∈ N0. Substituting into (A3a) this
yields eigenvalues of the form λn = n(n+ 1). Next take θ =
arccos(x) and transform equation (A3b) into(

(1− x2)Tx
)

x +n(n+1)T = 0, (A4)

which is Legendre’s differential equation. Solutions take the
form Tn(x) = Pn(x) = Pn(cos(θ)) where Pn are the complete,
orthogonal Legendre polynomials. The superposed solution
for the potential φ can thus be written as

φ(r,θ) =
∞

∑
n=0

(
Anrn +Bnr−(n+1)

)
Pn(cos(θ)). (A5)

Boundary condition (A2a) implies solutions must decay,
hence An = 0 ∀n ∈ N whilst (A2b) implies the normal deriva-
tive

φr =−
∞

∑
n=0

(n+1)Bnr−(n+2)Pn(cos(θ)) =−U∞ cos(θ),

(A6)

at r = rc. Comparing coefficients, the only Legendre polyno-
mial of the form cos(θ) is P1, hence the only non-zero con-
stant is B1 =U∞r3

c/2. The final solution is therefore

φ(r,θ) =
U∞

2
r3

c

r2 cos(θ) for r ≥ rc. (A7)

The DNS simulations require dimensionless profiles, hence
the flow components and pressure field are found (in Cartesian
form) to be

u2(x̄, ȳ) =−
( rc

D

)3 x̄
(x̄2 + ȳ2)2 , (A8a)

v2(x̄, ȳ) =
1
2

( rc

D

)3 ȳ
(x̄2 + ȳ2)2 , (A8b)

p2(x̄, ȳ) = p̄0−
ρ

8

( rc

D

)6 (4x̄2 + ȳ2)

(x̄2 + ȳ2)4 , (A8c)

for x̄2 + ȳ2 ≥ (rc/D)2. Note that these profiles must be
shifted in x̄ according to where the sphere is placed in the flow
domain (i.e. r0/D units away from the origin).
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